
Mechanism Design without Rational Expectations

Giacomo Rubbini∗

June 17, 2024

Most recent version

Abstract

Is incentive compatibility still necessary for implementation if we relax the rational

expectations assumption? This paper characterizes the class of solution concepts re-

quiring Bayesian Incentive Compatibility (BIC) for full implementation, showing that

BIC is still necessary for full implementation of functions in a broad class of non-

equilibrium solution concepts. This finding implies that some classical results, such

as the impossibility of efficient bilateral trade (Myerson & Satterthwaite, 1983), are

still relevant even if rational expectations do not hold. We argue this new approach to

mechanism design is useful to explore how robust the results obtained with equilibrium

solution concepts.
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1 Introduction

Can a planner implement a given social goal by designing rules of interaction between

agents when these agents hold private information they can exploit to their advantage?

The answer depends on how this interaction pans out, and the literature on mechanism

design and implementation has extensively explored this problem using a variety of game-

theoretic solution concepts.

While Bayesian Nash Equilibrium (BNE) remains a popular solution concept, insights

from the experimental and behavioral literatures have highlighted that equilibrium models

may not accurately predict agents’ behavior in many settings. In these settings—for in-

stance, when agents face a given interaction for the first time—the assumption that agents

correctly anticipate their opponents’ strategies (that is, that agents have rational expecta-

tions) feels particularly unpalatable.

It remains unclear whether alternative solution concepts allow full implementation of a

broader class of social choice rules than BNE. Recent results about full implementation of

social choice functions (SCFs) in non-equilibrium solution concepts suggest that the answer

may be negative. For instance, de Clippel et al. (2019) and Kunimoto et al. (2023) prove

that Bayesian Incentive Compatibility (BIC) is still necessary for full implementation of

functions in level-k reasoning and interim correlated rationalizability (ICR). In contrast,

results are more permissive for full level-k implementation of social choice sets (SCSs), for

which BIC is no longer necessary (de Clippel et al., 2019).1

This paper studies the limits of full implementation by characterizing the class of all

solution concepts such that BIC is necessary for full implementation. Our results suggest

that we can generally not expect to dramatically expand the set of implementable SCFs by

moving to non-equilibrium solution concepts, while results about SCSs are more permissive.

Our novel approach turns on its head implementation theory’s standard approach of

1Results are more permissive for partial implementation of SCFs, as shown in Crawford (2021)
and Kneeland (2022).
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fixing a solution concept and then deriving necessary conditions for full implementation,

allowing us to search for a deeper property linking all solution concepts requiring BIC

for full implementation. Other than providing useful guidance about the possibility of

implementing non-BIC social choice rules, these results allow us to extend some classical

findings in the literature (for example, Myerson and Satterthwaite’s (1983) impossibility

theorem) to a large class of solution concepts.

To achieve this goal, we propose a generalized model of full implementation that allows

agents to hold arbitrary expectations about their opponents’ strategies. This model allows

us to encompass all solution concepts in which agents best respond to their (possibly hetero-

geneous) expectations about their opponents. Our model nests the ones in Jackson (1991),

de Clippel et al. (2019), Crawford (2021), Kneeland (2022), and Kunimoto et al. (2023) as

special cases, unifying previous results about the necessity of BIC for full implementation.

For the case of implementation of SCFs, we show BIC is still necessary to implement

functions if and only if the solution concept satisfies a novel property we call Weak Solution

Consistency (WSC). This property can be interpreted as requiring that, for each type of

each agent, there exists a solution of the mechanism such that she does not have any

incentive to mimic a different type. Unlike regular incentive compatibility, WSC does not

imply that this solution is the same for all types of all agents.2 Even if this property is not

very restrictive, it is enough to establish the necessity of BIC, as full implementation of a

function requires all the mechanism’s solutions to yield the outcome prescribed by the SCF.

Several solution concepts in the literature satisfy WSC—for instance, the level-k model

of de Clippel et al. (2019), ICR (Kunimoto et al., 2023), and BNE (Jackson, 1991) satisfy

this condition for any given mechanism. Notably, in the spirit of the so-called Wilson

Doctrine, WSC (and thus the necessity of BIC) does not hinge on the assumption of common

knowledge of rationality.3

2See discussion at the end of Section 2.
3From an epistemic standpoint, WSC is almost equivalent to requiring that each type of each

agent knows (1) the type space and (2) that she can “mimic” a different type—that is, that she can
play the action another type would play and induce the planner to implement the corresponding
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By providing a characterization of the set of solution concepts that allow implementation

of BIC SCFs, this paper also identifies which solution concepts allow for implementation

of non-BIC functions. Cursed Equilibrium (CE; Eyster and Rabin 2005) and models with

self-similar beliefs (Rubinstein and Salant, 2016) fall into the latter category, as they do

not rule out the possibility that agents might not realize they could profitably mimic a

different type.4 Existence of non-WSC solution concepts confirms that WSC has bite, and

the characterization result hints at which solution concepts may be fruitful to investigate

to study implementation of non-BIC SCFs.

Social Choice Functions

All Solution Concepts

WSC = NecBIC

Level-k

BNE

ICR

CENBE

Social Choice Sets

All Solution Concepts

WSC

NecBIC

Level-k

BNE

CENBE

ICR

Figure 1: The class of solution concepts such that BIC is necessary for implementation (NecBIC)
of all SCFs coincides with the class of WSC solution concepts for full implementation of SCFs (left)
and it is a subset of the class of WSC solution concepts for full implementation of SCSs (right).

As for implementation of SCSs, WSC is not enough to establish the necessity of BIC

for full implementation (Figure 1).5 The necessity of BIC for implementation of SCSs

turns out to be close to assuming rational expectations. This, then, is a relatively fragile

result, unlikely to hold for most non-equilibrium models. WSC implies, however, that any

implementable SCS must contain partially incentive compatible SCFs—that is, SCFs that

outcome. Both requirements feel natural, confirming that WSC is a mild restriction.
4Other models, as Breitmoser (2019) or Gagnon-Bartsch et al. (2021), capture projection of a

player’s own type or preferences. While these solution concepts are captured by our framework, we
will not discuss them in this paper.

5The solution concept of de Clippel et al. (2019) is a case in point: even if their level-k reasoning
model satisfies WSC, they show in their Example 2 that it is possible to implement non-BIC SCSs.
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provide only some types and agents with the right incentives not to misrepresent their

private information. This last result confirms and extends the findings of Kneeland (2022)

for level-k reasoning models.

The contrast between the results for implementation of SCFs and SCSs suggests that

the necessity of BIC is mainly driven by the requirement that all solutions of the mechanism

yield the same SCF when rational expectations do not hold. As agents understand that

all solutions will lead to the same outcome in the case of implementation of SCFs, the

same SCF must provide incentives to all agents not to misrepresent their type (that is,

it must be BIC). If we allow different solutions to yield different outcomes instead (as in

the case of full implementation of SCSs), each type may believe a different solution of the

mechanism (and the associated SCF) will obtain. The planner no longer needs the same

SCF to simultaneously incentivize all types of all agents, unless rational expectations hold.

In a sense, decoupling agents’ expectations allows the planner to decouple the incentives she

provides them. As the rational expectations assumption makes this decoupling impossible,

BIC is necessary for implementation in equilibrium solution concepts.

This discussion highlights a new tension that behavioral mechanism design faces: while

having a unique outcome for all solutions offers starker predictions in applications, it of-

ten delivers restrictive results regarding incentive compatibility. This tension is absent in

equilibrium solution concepts: regardless of the number of solution outcomes, the rational

expectations assumption ensures BIC is necessary for implementation. This result follows

again from the fact that both the uniqueness requirement and the rational expectations

assumption do not allow the planner to decouple the incentives she provides to each agent

from the ones she provides to other agents.

These results are important as they allow us to extend classical mechanism design find-

ings to full implementation in any WSC solution concept. For the case of full implemen-

tation of functions, Section 6 considers three applications that extend to all WSC solution

concepts: the Revenue Equivalence Theorem (Myerson, 1981), the impossibility of ex-post
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efficient and budget-balanced bilateral trade (Myerson and Satterthwaite, 1983), and the

impossibility of full surplus extraction in auctions. These applications highlight that much

of the underlying economic intuition for these results does indeed not hinge on the rational

expectations assumption or the use of a particular equilibrium solution concept per se, and

it remains central for the case of boundedly rational agents as well.

This paper advances the literature on mechanism design and bounded rationality by

providing a methodology to answer open questions about implementation with and without

rational expectations. Unlike previous works, this paper investigates the robustness of the

necessity of BIC to changes in the solution concept. Previous papers focused instead on

robustness in other model features—for example, Saran (2011) characterizes the domain of

preferences on which the revelation principle holds, while Artemov et al. (2013) prove that

the restrictiveness of robust virtual implementation stems from a particular zero-measure

set of beliefs. This work also relates to approaches considering a planner with an inaccurate

model of agents’ payoffs and beliefs, and in particular the literature about continuous (Oury

and Tercieux, 2012; de Clippel et al., 2023) and robust (Bergemann and Morris, 2005)

implementation. However, this paper focuses on a planner with an accurate model of

payoffs and beliefs who is not sure how these map to the outcomes of strategic interaction,

and it studies how sensitive restrictions on the set of implementable SCFs (such as BIC)

are to changes in this mapping.

Our approach is relevant to the study of different implementation frameworks or nec-

essary conditions as well. For instance, de Clippel et al. (2023) show that imposing the

continuity requirement on level-k implementation does not make it significantly more re-

strictive as it does for BNE implementation. This result could be extended by characterizing

the class of solution concepts for which it holds, highlighting what properties of the solu-

tion concept cause continuous implementation to impose significant additional restrictions

on the class of implementable SCFs.
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2 Model

The goal of the social planner is to select an alternative from a set A, conditional on some

information privately held by the agents in set I. As usual in the literature, incomplete

information is modeled by assuming that there exists a set of types Ti for each agent i ∈ I

and that each agent knows her type but not the type of other players. Let T = ×i∈ITi be

the set of all possible type profiles.

Agents’ (interim) beliefs about the types of their opponents are denoted as pi : Ti →

∆(T−i)—that is, when an agent is of type ti, she believes other players are of types t−i

with probability pi(t−i|ti).6 Assume also that for all t ∈ T , there exists t ∈ T such that

t−i belongs to the support of pi(·|ti).7 Preferences over lotteries have expected utility form,

with Bernoulli utility ui : A × T → R. Abusing notation slightly, let ui(a, t) for a ∈ ∆(A)

denote the utility agent i derives from lottery a when the type profile is t.

The social planner seeks to implement a social choice function f : T → ∆(A), and she

does so by designing a mechanism γ = (µ, S), where S = ×i∈ISi is an action space and

µ : S → ∆(A) is an outcome function. Let Γ denote the set of all possible mechanisms

the planner can design. Once the planner has committed to a mechanism, agents choose

a strategy profile σ : T → ∆(S). We denote the set of such functions as Σ. For all i ∈ I,

we let Σi denote the set of all functions σi : Ti → ∆(Si) and all functions Σ−i denote the

set of σ−i : T−i → ∆(S−i). For the rest of the paper, we slightly abuse the notation above

by considering µ(σ(t)) to denote the lottery over A induced by σ(t) under the outcome

function µ.

Define a solution concept S as a correspondence mapping each mechanism γ to a subset

of the set of all strategy profiles Σ.8 We then say an SCF f is fully implementable whenever

6For example, we can take pi(t−i|ti) to be the Bayesian posterior stemming from a common prior
distribution q : T → (0, 1) such that q(T ) = 1.

7This assumption is not necessary for the argument, but it makes the notation more convenient
by avoiding stating results in terms of equivalent SCFs.

8To be precise, S maps the game induced by mechanism γ to a set of solutions. As the set of
players, the type space, and the utility functions are taken as given, for the sake of brevity in the
remainder of the paper let us say S associates each mechanism γ with the set of its solutions S(γ).
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(1) there exists a mechanism γ ∈ Γ that has at least one solution and (2) every such

solution yields the outcome prescribed by f . Formally, an SCF f is fully implementable in

S whenever there exists an implementing mechanism γ such that S(γ) ̸= ∅ and µ(S(γ)) = f .

Moreover, let Γf,S ⊆ Γ denote the class of all such mechanisms.

In Section 4.2, we will generalize the discussion by assuming the planner seeks to im-

plement a Social Choice Set F , where F is a non-empty collection of SCFs. We say F is

fully implementable whenever there exists a mechanism γ ∈ Γ such that µ(S(γ)) = F , and

we denote the class of mechanisms implementing F as ΓF,S ⊆ Γ.

For the remainder of the paper, we will refer to full implementation simply as implemen-

tation unless otherwise specified. For implementation of function, we will moreover refer

to the requirement that µ(S(γ)) = f as the uniqueness requirement, as it demands that all

solutions of the mechanism yield the very same SCF.

We say an SCF f is Bayesian Incentive Compatible (BIC) for agent i of type ti whenever,

for all t′i ∈ Ti:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

That is, type ti of agent i has no incentive to pretend to be of a different type in the direct

mechanism associated with the SCF. We also say f is BIC whenever it is BIC for all i ∈ I

and ti ∈ Ti, and that an SCS F is BIC whenever all f ∈ F are BIC.

Similarly, we say f is Strict-if-Responsive Bayesian Incentive Compatible (SIRBIC) for

type ti of agent i ∈ I whenever it is BIC for ti ∈ Ti and the inequality above is strict for

all t′i ̸= ti such that f(t′i, t−i) ̸= f(t) for some t−i ∈ T−i. Again, f is SIRBIC whenever it is

SIRBIC for all types of all agents, and F is SIRBIC if all SCF f ∈ F are SIRBIC.

We derive most of our results about the necessity of BIC by imposing a mild requirement

on the solution concept S. This requirement can be interpreted as requiring that for each

type ti of agent i, a solution of the mechanism exists such that she has no incentive to play

the strategy associated with a different type.

7



Definition 1 (Weak Solution Consistency (WSC)). A solution concept S satisfies WSC

for a class of mechanisms Γ̃ ⊆ Γ whenever for all γ ∈ Γ̃, i ∈ I, and ti ∈ Ti there exists

σi,ti ∈ S(γ) such that for all t′i ∈ Ti:

∫
T−i

ui(µ(σ
i,ti(t), t) dpi(t−i|ti) ≥

∫
T−i

ui(µ(σ
i,ti(t′i, t−i), t) dpi(t−i|ti).

We say S satisfies WSC if it satisfies WSC for all γ ∈ Γ such that S(γ) ̸= ∅.

Notice that this solution σi,ti need not be the same for all players i as we do not require

agents’ expectations to be consistent. As we allow expectations to be type dependent, this

solution need not be the same for any type ti of player i either.
9 This highlights that WSC

is much weaker than incentive compatibility, which instead requires σi,ti to be the same for

all types of all players.10 Moreover, Definition 1 directly implies that a solution concept S

is WSC whenever S̃ ⊆ S for a WSC solution concept S̃.

Finally, we make a few additional technical assumptions. To make sure expected utility

is well defined over the spaces discussed in the paper, let A, Ti, and Si be separable metriz-

able spaces endowed with the Borel sigma algebra; let product sets be endowed with the

product topology; let the Bernoulli utility functions be bounded and continuous; and let

SCF, mechanisms and strategies be measurable functions.

2.1 Modeling Expectations Explicitly

A key feature of rational expectations models is that agents’ expectations turn out to be

correct in equilibrium. For example, if σ is a BNE, player i expects her opponents to play

σ−i: agents expect their opponents to play exactly the strategy they are actually playing.

This is no longer the case when dispensing the rational expectations assumption: agents

may be responding to an incorrect conjecture about their opponents’ strategies.

9About these points, see also Remark 2 in Kneeland (2022) and the discussion of weak Interim
Rationalizable Monotonicity in Kunimoto et al. (2023).

10For more details, we refer the reader to the discussion of Total Weak Solution Consistency in
Section 4.2.
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It will sometimes be convenient to model more explicitly the expectations agents are

responding to, and how they translate into a solution concept. For a given mechanism γ,

let ei,ti ∈ Σ−i represent the expectations of type ti of agent i about the strategy player

by her opponents. The set of all possible expectations for mechanism γ is denoted as

E(γ) = ×i∈IΣ−i. As ei,ti is a strategy profile for players j ̸= i, we sometimes evaluate it

at t−i; thus, ei,ti(t−i) ∈ ∆(S−i). To make the notation more compact, define a mapping

ei : Ti → Σ−i that assigns ei,ti to each type ti ∈ Ti and denote as e any profile (ei)i∈I ∈ E(γ).

The formulation above implicitly assumes expectations are deterministic. However,

given that we assume agents’ preferences over lotteries admit an expected utility represen-

tation, this assumption does not cause further loss of generality. Agents are also allowed to

expect their opponents’ actions to be correlated as ei,ti ∈ Σ−i, and we do not assume Σ−i

have a product structure. This formulation makes it possible to accommodate models such

as the ICR model in Kunimoto et al. (2023).11

Let then a theory of expectations E be any correspondence mapping each mechanism γ

to a subset E(γ) of E(γ). We interpret E(γ) as the expectations the model allows agents

to hold. For example, ICR implicitly rules out the possibility that agents expect one of

their opponents to play a dominated strategy (see Section 5 for some examples of models of

expectations). As in de Clippel et al. (2019) and Kunimoto et al. (2023), we can interpret

E(γ) as the set of expectation profiles the planner believes could happen with nonzero

probability. This interpretation is reflected in the implementation concept defined below,

which requires the outcome prescribed by f to prevail regardless of the expectation profile

considered.

Define a theory of response as any correspondence R : E × γ → Σ. It is easy to see

that the composition S = R ◦ E is then a solution concept: S maps each mechanism γ to

a subset of Σ, which we can interpret as the mechanism’s solutions. Formally, let σ is a

solution of mechanism γ whenever σ ∈ R(e) for e ∈ E(γ).

11See Dekel et al. (2007) for further discussion about the difference between independent and
correlated interim rationalizability.
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2.1.1 A Sufficient Condition for WSC

Modeling expectations and responses explicitly enables us to provide a sufficient condition

for WSC that is both insightful and easy to check.

For all σ−i ∈ Σ−i, denote as Bi,ti(σ−i) the set of best replies for type ti of i to the profile

σ−i.
12 That is, if si ∈ Bi,ti(σ−i), then for all s′i ∈ ∆(Si):

∫
T−i

ui(µ(si, σ−i(t−i)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(s
′
i, σ−i(t−i)), t) dpi(t−i|ti).

Let B(e) denote the set of σ ∈ Σ such that for all i ∈ I and t ∈ T , σi(ti) ∈ Bi,ti(ei,ti).

We then say a solution concept S is Solution Consistent (SC) for mechanism γ whenever

R ⊆ B and for all i ∈ I and ti ∈ Ti there exists e ∈ E(γ) and σ ∈ R(e) such that

(σi, ei,ti) ∈ S(γ).13 We can see immediately that if S satisfies SC for mechanism γ, then

it satisfies WSC for the same mechanism. We say S is SC whenever it is SC for all γ ∈ Γ

such that S(γ) ̸= ∅.

Solution Consistency is a rather mild requirement on S, as it requires only that agents

best respond to what they expect from their opponents and that the resulting strategy

profile could be justified as being a solution of the mechanism. This means we can also

interpret SC as demanding agents believe that their opponents display a minimal level

of rationality: type ti of i responds to the expectaction her opponents respond to some

expectation profile e′ ∈ E(γ)—that is, (σi, ei,ti) ∈ S(γ).

To make the interpretation above clearer, consider an example in which SC does not

hold. This is the case, for example, if we assume all players are either of level 1 or 0 in the

models of de Clippel et al. (2019), Crawford (2021), and Kneeland (2022). Suppose that, for

all level-0 agents, the anchor is to play a dominated strategy. Then, profile (σi(t
′
i), α−i(t−i))

12The set of best responses should depend on the specific mechanism used as well, but we omit it
to simplify notation.

13As (σi, ei,ti) ∈ S(γ) if and only if there exists e′ ∈ E(γ) such that (σi, ei,ti) ∈ R(e′), we can
equivalently state that SC requires that for all i ∈ I and ti ∈ Ti there exists e, e′ ∈ E(γ) and
σ ∈ R(e) such that (σi, ei,ti) ∈ R(e′).
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can not be a solution of the mechanism, generating an inconsistency between the profile

level-1 agents believe would prevail in the mechanism and what the solution concept actually

is. Indeed, assuming all agents can be at least level 2 is crucial to ensure that SC holds for

all γ ∈ Γ (Section 5.1).

3 A Bilateral Trading Example

We can clarify the intuition about BIC’s necessity for full implementation of functions by

considering the example of bilateral trade between level-k parties from Crawford (2021) and

the discussion of said example in de Clippel et al. (2019).

Before moving to the example itself, we summarize how level-k models of behavior work.

Level-0 players of type ti are näıve and (non-strategically) play some anchor αi(ti), which is

exogenous to the model. Level-1 agents instead believe their opponents to be level-0, thus

they best respond to the belief their opponents are playing the anchor. We will say any

such best response is a level-1 consistent strategy, denoted as σ1. For every level ki > 1,

agents of level k believe their opponents to be playing a level-(k − 1) consistent strategy

σki−1 and best respond accordingly. We say profile σ is a solution of a game γ whenever

there exists a combination of levels {ki}i∈I such that ki > 0 for all i ∈ I and σi is level-ki

consistent for all i ∈ I.14

Suppose two risk-neutral parties trade an indivisible object with value c for the seller

and v for the buyer, with both values distributed independently and uniformly between 0

and 1. The seller and the buyer respectively submit an ask a and a bid b for the object, and

trade happens if and only if b ≥ a. In that case, the trading price is x = 0.5(a + b). The

utility from not trading is 0 for both parties, while the utility from trading is us = x − c

and ub = v − x for the seller and the buyer, respectively.

14As in de Clippel et al. (2019), each agent’s type describes only her beliefs about the payoff-
relevant state: as levels do not affect preferences, they are not part of the description of an agent’s
type.
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As in Crawford (2021), we assume that the agents’ anchor is uniformly distributed

over [0, 1] and that both agents are of level k = 1. Then there exists an SCF f that is

implementable but not BIC: the unique level-1 consistent strategies are to bid 2
3v for the

buyer and to ask 2
3c+

1
3 for the seller, and the associated SCF stipulates that trade happens

if and only if 2v ≥ 2c + 1 at a price of 1
6(2v + 2c + 1). As remarked by de Clippel et al.

(2019), a buyer of value v = 0.5 would then have an incentive to imitate a buyer of type

v = 0.75 to gain a positive payoff, violating BIC.

However, the same function is not implementable if the two agents could both be of

level k = 2. de Clippel et al. (2019) highlight that playing 2
3v+

1
9 for v ≥ 1

3 and v otherwise

is a best response for the buyer to the level-1 strategy of the seller. Similarly, playing 2
3c+

2
9

for c ≥ 1
3 and c otherwise is a best reply for the seller to a level-1 buyer. The strategies

form a solution of the mechanism considered, but the mechanism fails to implement f as

the two solutions lead to different outcomes.15

This discrepancy follows because full implementation of a SCF requires all solutions of

the mechanism to yield the same outcome for each type profile t ∈ T for the mechanism to

implement an SCF f . The argument generalizes to any arbitrary mechanism γ = (µ, S).

Suppose γ has a solution σ1 (so that σ1
i is a best reply to α−i for all agents), and suppose

such a solution induces a non-incentive compatible SCF. Then, σ′ = (σ2
i , σ

1
−i) is a solution

of the mechanism whenever σ2
i is a best reply to σ1

−i, as player i is best responding to level-1

consistent strategies while her opponents are best responding to their anchors.16 Moreover,

it cannot be the case that µ(σ1) = µ(σ′). As σ1 implements a non-BIC f , there exist i ∈ I,

15As a matter of fact, it is straightforward to check that two level-2 players would trade for
v = c = 1

4 , while two level-1 players would not trade for those values as 1
2 = 2v < 2c+ 1 = 3

2 .
16For the sake of simplicity, we implicitly assume that the set of level-2 consistent strategies is

non-empty. See Section 5.1 for a general discussion.
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ti, t
′
i ∈ Ti:

∫
T−i

ui(µ(σ
2
i (t

′
i), σ

1
−i(t−i)), t) dpi(t−i|ti) =∫

T−i

ui(µ(σ
1
i (t

′
i), σ

1
−i(t−i)), t) dpi(t−i|ti) >∫

T−i

ui(µ(σ
1
i (ti), σ

1
−i(t−i)), t) dpi(t−i|ti) =∫

T−i

ui(µ(σ
2
i (ti), σ

1
−i(t−i)), t) dpi(t−i|ti)

Therefore, σ2 is not a best reply to σ1 for at least one type ti of player i. It must then be the

case that µ(σ1) ̸= µ(σ′). This violates uniqueness, making it impossible for the mechanism

to implement any non-incentive compatible SCF.17

While the argument above relies on the properties of level-k models (which are often

solved recursively starting from the anchor), a similar result holds for a larger class of

solution concepts: BIC is necessary for implementation in any solution concept such that

agents correctly anticipate the (possibly stochastic) outcome of the mechanism in each state.

Equilibrium solution concepts clearly fall into this class, as agents correctly anticipate

the strategies their opponents are using—that is, agents hold rational expectations. This

class is broader, and it encompasses also solution concepts in which agents possibly hold

heterogeneous and/or incorrect expectations about the strategies of their opponents. For

instance, if we insist on full implementation of an SCF, the level-k reasoning model of

de Clippel et al. (2019) and ICR (Kunimoto et al., 2023) fall into this class. Section 6.1

discusses how, for full implementation of functions, the impossibility result of Myerson and

Satterthwaite (1983) generalizes to this broader class of solution concepts, confirming its

robustness even outside the rational expectations paradigm.

17It would still be possible for the mechanism to implement a social choice set. In fact, de Clippel
et al. (2019) prove BIC is no longer necessary for level-k implementation in this case.
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4 Results

We prove that BIC is still a necessary condition for implementation of functions if and

only if the solution concept satisfies a novel property we called Weak Solution Consistency

(Section 4.1). This property can be interpreted as requiring that for each type of each

agent, there exists a solution of the mechanism in which she does not want to imitate a

different type. WSC is satisfied by several solution concepts that have been considered in

the literature, with some notable exceptions (Section 5). WSC is not enough, however, to

establish that BIC is necessary for full implementation of sets (Section 4.2), for which we

need a condition stronger than WSC.

4.1 Full Implementation of Functions

There is a tight link between WSC and the necessity of BIC for implementation of functions:

BIC remains a necessary condition whenever the solution concept is WSC for all mechanisms

implementing f (and thus, whenever it is WSC for all mechanisms). Conversely, if f is BIC,

S is WSC for the whole class of implementing mechanisms Γf,S .

Theorem 1. If f is implementable in S and S is WSC for Γf,S , then it is BIC. If f is

BIC and implementable in S, then S is WSC for Γf,S .

As WSC solution concepts are such that an agent may mimic a different type, any

impleme

As WSC solution concepts allows an agent of type ti to “mimic” a different type t′i by

playing the action t′i would play, any implementable SCF must provide agents an incentive

not to misreport their type. The result then follows from the uniqueness requirement, which

entails that the same SCF must incentivize all agents not to mimic a different type.

The full proof for the result is relegated to Appendix B. It is, however, instructive to

discuss here a sketch of the argument for the “if” part to appreciate how WSC and the

uniqueness requirement of full implementation drive the final result. The key step of the
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proof involves noticing that whenever a solution σ of mechanism γ exists such that for type

ti and all t′i ∈ Ti:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

Then, as any f implemented by γ is such that µ(σ) = f by the uniqueness requirement of

full implementability, the inequality above yields:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

WSC ensures that such a solution σ ∈ S exists for all i ∈ I and ti ∈ Ti: then, by the

uniqueness requirement, if follows that all such solutions will yield f as an outcome. This

is enough to establish that f is indeed BIC.

As argued below, the class of WSC solution concepts is rather broad, and it includes

the level-k model of de Clippel et al. (2019), BNE, and ICR (Dekel et al., 2007). For an

example of a WSC solution concept not yet considered in the literature, see the discussion

about ∆-rationalizability in Section 5.2.18

4.1.1 Necessity of SIRBIC

We can use E and R to show that the necessity of SIRBIC is a byproduct of the assumption

that all best replies to an agent’s expectations concur to form a solution of the mechanism,

rather than to the use of a non-equilibrium solution concept. This is the case, for example,

in de Clippel et al. (2019) and Kunimoto et al. (2023).

Theorem 2. Suppose f is BIC and implementable in S. If R = B, then f is SIRBIC.

That is, if all best replies to a profile of expectations are solutions to the mechanism (as

is the case for the examples discussed in Section 5), SIRBIC obtains for free from BIC and

18Although the tools described in this paper can be used to investigate the necessity of BIC for
implementation in other solution concepts as well, such an endeavor falls beyond this paper’s scope.
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implementability.

4.2 Full Implementation of Sets

The results in Section 4.1 suggest that the necessity of BIC is robust even if we consider

non-equilibrium solution concepts for the case of full implementation of functions. This

section considers implementation of social choice sets instead. de Clippel et al. (2019) and

Kneeland (2022) prove that implementation of sets is more permissive than implementation

of functions, as incentive compatibility of F is not necessary for implementation. Theorem 3

proves these positive results are due to the relaxation of the uniqueness requirement.

Theorem 3. If F is implementable in WSC S, then for all i ∈ I and ti ∈ Ti, there exists

f i,ti ∈ F that is BIC for i and ti. Conversely, if F is implementable and there exists

f i,ti ∈ F that is BIC for i and ti, then S is WSC for ΓF,S .

This result generalizes the standard incentive compatibility constraint, showing that

only a form of partial incentive compatibility is necessary for implementation of sets. In-

centive constraints can be satisfied through a different function f i,ti for each agent and

type.19 A key implication is that the planner may be able to promise each type of each

agent a different incentive f i,ti , exploiting heterogeneity in expectations across agents and

types. Conversely, BIC requires the same function f to satisfy the incentive constraints

of all players and types, imposing f i,ti = f j,tj for all i, j ∈ I, ti ∈ Ti, and tj ∈ Tj . This

provides intuition as to why implementation of sets is much more permissive than imple-

mentation of functions: as the planner is not restricted to a unique outcome for all solutions,

she can decouple the incentives provided to each type of each player, possibly allowing for

implementation of sets that do not contain any incentive compatible SCF.

We can also characterize the set of solution concepts that make BIC necessary for im-

plementation when the uniqueness requirement is dropped. As the discussion of Theorem 3

19This point is similar to the one Kneeland (2022) makes about level-k models.
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suggests, this class will feature concepts in which beliefs are consistent across players and

types.

Definition 2 (Total Weak Solution Consistency (TWSC)). We say a solution concept S

is TWSC for mechanism γ whenever for all σ ∈ S, i ∈ I, ti, t
′
i ∈ Ti:

∫
T−i

ui(µ(σ(t)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σi(t
′
i, t−i)), t) dpi(t−i|ti).

TWSC requires all solutions of the mechanism to be incentive compatible, and it is

almost equivalent to BNE. The only difference is that for all i ∈ I, TWSC requires σi(ti)

to be a better (rather than best) reply than σi(t
′
i) to profile σ−i.

Theorem 4. If F is implementable in TWSC S, then it is BIC. If F is implementable and

BIC, then S is TWSC for ΓF,S .

Theorem 4 suggests that, whenever F is not a singleton, the necessity of BIC is a

more “fragile” result that follows very restrictive assumptions about the solution concept.

This fragility arises because a non-singleton F allows different players to believe different

outcomes will prevail in the mechanism. Therefore, it becomes no longer necessary for

the same outcome to simultaneously provides incentives not to misrepresent their private

information to each type and agent.

This intuition is confirmed by the fact that TWSC and WSC are equivalent for all

mechanisms yielding the same outcome for all solutions. Therefore, in the non-rational

expectations case, the BIC restriction on the class of implementable social choice rules can

be imputed to the insistence on the uniqueness requirement—that is, on insisting on fully

implementing an SCF.

Theorem 3 provides a weaker result than the one obtained from Kneeland (2022) for

level-k implementation. In this case, we can make use of E in a more explicit way to bridge

the gap between the two by requiring expectations to not depend on each agent’s type.20

20It would be possible to express the results below in terms of a modified WSC condition as well
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We say expectations are type-independent whenever for all γ ∈ Γ and e ∈ E(γ), we have

ei,ti = ei,t′i for all i ∈ I and ti, t
′
i ∈ Ti.

We can then strengthen the if part of Theorem 3 as follows.

Theorem 5. If F is implementable in SC S and expectations are type-independent, for all

i ∈ I there exists f i ∈ F that is BIC for i.

Theorem 5 tells us that if expectations are constant with respect to i’s type, then the

same SCF f i must provide all types ti ∈ Ti with an incentive not to mimic another type.21

As for the difference between Theorem 1 and Theorem 3, the comparison of Theorem 3 and

Theorem 5 highlights how heterogeneity in expectations leads to a larger class of imple-

mentable social choice rules.

5 Examples

As argued in the previous section, WSC and SC do not seem to be very restrictive. It

is indeed satisfied by various solution concepts proposed in the literature: BNE (Jackson,

1991), level-k reasoning (de Clippel et al., 2019; Kneeland, 2022), and ICR (Kunimoto et al.,

2023).

WSC, in contrast, is not satisfied by Eyster and Rabin’s (2005) Cursed Equilibrium and

by a solution concept in which agents project on their opponents their own actions, similarly

to self-similarity of Rubinstein and Salant (2016). Informally, this is because these models

are such that the profile of strategies formed by an agent’s expectations and her response

to those expectations is generally not a solution of the mechanism. These novel examples,

together with Crawford’s (2021) level-k model with no level-2 agents, serve to confirm that

WSC does indeed have bite.

by substituting the qualifier “for all i ∈ I and ti ∈ Ti” with “for all i ∈ I.” However, stating the
results in terms of expectations seems to be more intuitive.

21For the result to go through, the argument in the proof of Theorem 5 requires only that there
exists one type-independent expectation in E(γ) for each agent.
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5.1 Level-k Reasoning

The discussion in this section builds on the models of de Clippel et al. (2019) and Kneeland

(2022), which assume that any profile of levels ki is possible, as long each level is lower than

an upper bound k̄ ≥ 2—that is, ki ≤ k̄ for all i ∈ I.

Let α−i : Γ → Σ−i be any function assigning a profile of anchors to each mechanism

γ ∈ Γ. For each agent i ∈ I, let S1
−i(γ|α) denote the set of all level-1 consistent strategies

σ−i : T−i → ∆(S−i). Similarly, we denote the set of best replies to level-(ki − 1) consistent

strategy profiles as the set of level-ki consistent strategies Ski
−i(γ|α).

We can now characterize the set of solutions for each mechanism γ by setting R = B

and E = EK,α, where:

EK,α(γ) = {e ∈ E : ei,ti ∈ {α−i(γ)}∪{∪1≤ki≤k̄S
ki−1
−i (γ|α)}, ei,ti = ei,t′i , for all i ∈ I, ti, t

′
i ∈ Ti}.

That is, the set of all e ∈ E is such that each player i expects the remaining players

to play the anchor (ei ∈ α−i(γ)) or to best respond as players of some level ki − 1 (ei ∈

∪1≤ki≤KSki−1
−i (µ|α)). It is immediately apparent that any strategy profile such that each

player’s strategy is level-ki consistent for ki ≥ 1 is a solution of the mechanism.22

This solution concept satisfies SC for all γ ∈ Γ. Because k̄ ≥ 2, EK,α(γ) contains at

least one e such that ei ∈ S1
−i(γ|α). Consider, then, that for all i ∈ I and ti ∈ Ti, any

σ ∈ B(e) = R(e). It is clear, then, that (σi, ei) ∈ S(γ) because σi is a level-2 consistent

strategy and ei is a profile of level-1 consistent strategies.

The assumption that k̄ ≥ 2 (de Clippel et al., 2019; Kneeland, 2022) is useful to exclude

pathological cases in which a player can only expect her opponent to play the anchor. This

clarifies why the findings of de Clippel et al. (2019) and Kneeland (2022) differ from those

in Section 4.1 of Crawford (2021), which instead proves it is possible to implement non-BIC

SCFs even when the solution is unique. This possibility result arises because in that setup

22In this case, expectations are type independent, allowing for a slightly stronger result about full
implementation of SCSs (Theorem 5).
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Crawford (2021) considers level-1 players only, allowing for the possibility that SC does not

hold.

5.2 Interim Correlated and ∆-Rationalizability

Kunimoto et al. (2023) study implementation using Interim Correlated Rationalizability

(ICR) as a solution concept, finding that SIRBIC is a necessary condition for implementing

SCFs.

Let C = (Ci)i∈I be a correspondence profile such that Ci : Ti → 2Si for all i ∈ I.

Consider now the operator b = (bi)i∈I iteratively eliminating strategies that are never a

best response:

bi(C)[ti] ≡

si ∈ Si :

∃λi ∈ Σ−i such that:

(1) supp(λi(t−i)) ⊆ C−i(t−i);

(2) si ∈ argmaxs′i

∫
T−i

ui(µ(s
′
i, σ−i(t−i)), t) dpi(t−i|ti)


As argued in Kunimoto et al. (2023), by Tarski’s theorem, there exists a largest fixed point

of b, which is denoted as Cγ(T ). The authors then require that, for f to be implementable,

there must exist a mechanism such that (1) the desired outcome obtains for all rationalizable

strategy profiles and (2) each type ti has at least one rationalizable action.

We can then show that the class of ICR strategy profiles can be characterized by the

following pair (EICR, RICR) :23

EICR(γ) = {e ∈ E : supp(ei,ti(t−i)) ⊆ C
γ(T )
−i (t−i)}

RICR(e) = {σ ∈ Σ : σ ∈ B(e), |supp(σ(t))| = 1 for all t ∈ T}

This follows because SICR(γ) = RICR(EICR) = Cγ(T ) for all γ ∈ Γ. In fact, σ ∈ B(e)

23The requirement that supp(σ(t))| = 1 for all t ∈ T is due to the fact we focus on pure rational-
izable actions, as usual in this literature.
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for e ∈ E(γ) implies that the unique profile s in σ’s support is rationalizable, and thus it

implies that σ ∈ Cγ(T ) and S ⊆ Cγ(T ). Conversely, suppose σ ∈ Cγ(T ). then for all i ∈ I

and ti ∈ Ti, there exists a λi ∈ C
γ(T )
−i to which σi(ti) is a best reply. Setting ei,ti = λi is

then enough to achieve Cγ(T ) ⊆ S.

ICR satisfies SC for a large class of mechanisms γ ∈ Γ—in particular, those in which

Bi(ei,ti) ̸= ∅ for all i ∈ I and ti ∈ Ti—for instance, if A is finite as in Kunimoto et al.

(2023). Then, for any solution σ ∈ SICR and σ̃i ∈ Bi(σ−i), we have (σ̃i, σ−i) ∈ SICR(γ) as

σ ∈ SICR(γ) entails that σ−i is rationalizable for all agents j ̸= i and that σ̃i is rationalized

by the belief that i’s opponents are playing σ−i.

The same argument applies even if we require, similarly to ∆-rationalizability (Battigalli

and Siniscalchi, 2003), that agents’ beliefs about their opponents’ strategies lie in a pre-

specified set. For each i ∈ I and ti ∈ Ti, let ∆
i map each mechanism Γ to a set of “allowed”

beliefs ∆i(γ). Let ∆ = (∆i)i∈I . We can then redefine the operator b as follows:

bi(C)[ti] ≡

si ∈ Si :

∃λi ∈ ∆i ⊆ Σ−i such that:

(1) supp(λi(t−i)) ⊆ C−i(t−i);

(2) si ∈ argmaxs′i

∫
T−i

ui(µ(s
′
i, σ−i(t−i)), t) dpi(t−i|ti)


Again, as b is a monotone operator, Tarski’s theorem implies that there exists a largest

fixed point, which we again denote as Cγ(T ),∆. The same argument as above then shows

that the class of ∆-rationalizable strategies S∆ can be characterized through the following

pair:

E∆(γ) = {e ∈ E : supp(ei,ti(t−i)) ⊆ C
γ(T ),∆
−i (t−i)}

R∆(e) = {σ ∈ Σ : σ ∈ B(e), |supp(σ(t))| = 1 for all t ∈ T}

∆-rationalizable full implementation has not been considered in the literature, so it is

not yet known whether BIC is necessary for full implementation.24 There is no obvious

24Artemov et al. (2013) use ∆-rationalizability as a solution concept. Differently from this paper,
they study robust virtual implementation by imposing restrictions on the set of beliefs agents may
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relation between the set of ∆-rationalizable profiles and equilibrium profiles either, as the

relation depends on the restrictions imposed by ∆. For a simple example, focus on the

following complete-information game:25

Player C

A B C

A (2, 2) (−2,−2) (−2,−2)

Player R B (−2,−2) (1,−1) (−1, 1)

C (−2,−2) (−1, 1) (1,−1)

This game admits only one pure-strategy equilibrium in which both players play A.26 If

∆ imposes no restriction on players’ beliefs, any pure-strategy profile is ∆-rationalizable;

therefore, any equilibrium is ∆-rationalizable as well. Suppose now we restrict agents’ beliefs

to assign positive probability to B and C only. As A is dominated when the opponent never

plays A, any profile in which A is played is now not ∆-rationalizable, implying that the set

of ∆-rationalizable profiles is disjoint from the set equilibrium profiles.

We can then use Theorem 1 and Theorem 3 to derive a novel result about the necessity

of BIC for ∆-rationalizable implementation by proving that S∆ is WSC whenever ∆ does

not rule out the possibility that agents believe that their opponents will play a pure strategy.

That is, for all i ∈ I, let ∆i contain all λi whose support is a singleton for all t−i ∈ T−i.
27

Consider again the class of mechanisms such that Bi(ei,ti) ̸= ∅ for all i ∈ I and ti ∈ Ti.

As the set of solutions is non-empty, there exists a pure strategy profile σ such that σj is

rationalized by a belief λj in ∆j for all j ∈ I. We then construct σi,ti = (σ∗
i , σ−i), where

σ∗
i ∈ Bi,ti(σ−i). As σ

i,ti
i is rationalized by σ−i ∈ ∆i, and σi,ti

j is rationalized by some belief

in ∆j for all j ̸= i, it follows that σi,ti ∈ S∆ and thus, as our choice of i and ti was arbitrary,

that S∆ is WSC.

have about their opponents’ types.
25We can think of it as a Bayesian game in which each player has only one type.
26We focus on pure equilibria to keep our results comparable with those for Interim Correlated

Rationalizability discussed above.
27For the result to go through, it is enough that the set of ∆-rationalizable strategies for i’s

opponents has a non-empty intersection with set ∆i for all i ∈ I.
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5.3 Bayesian Nash Equilibrium and Refinements

The setup proposed in this paper can capture Bayesian Nash equilibrium if we impose the

following:

EBN (γ) = {e ∈ E(γ) : ∃ σ ∈ ×i∈IΣi s.t. ei,ti = σ−i for all i ∈ I, ti ∈ Ti}

RBN (e) = {σ ∈ B(e) : σ−i = ei for all i ∈ I}

It is clear then that the set of BNEs is equal to RBN (EBN (γ)) = SBN (γ). In fact, if

σ ∈ SBN (γ), then σi ∈ B(σ−i) for all i ∈ I. On the other hand, if σ is a BNE, it is

immediate to notice that (σ−i)i∈I ∈ EBN (γ) and thus that σ ∈ RBN (e). Moreover, as

long as EBN (γ) ̸= ∅, RBN (EBN (γ)) ̸= ∅ as well. In fact, RBN just selects, among all

profiles of best responses, the one satisfying rational expectations. SBN also satisfies SC

for all γ ∈ Γ because for all i ∈ I and ti ∈ Ti, the expectation profile e′ = (σ−i)i∈I is such

that (σi, ei,ti) = σ ∈ B(e′). A similar argument applies to refinements of BNE as well (as

undominated BNE).

5.4 Cursed Equilibrium

Our setup can also capture the Cursed Equilibrium solution concept from Eyster and Rabin

(2005). Cursed Equilibrium seeks to capture the intuition that agent underestimate the

correlation between their opponents’ types and actions. This is modeled by assuming agents

best respond to the expectations that their opponents’ actions will depend on their type

with probability (1− χ) and that they will not depend on their type with probability χ.

This leads to the following theory of behavior:

ECE(γ) = {e ∈ E(γ) : ∃ σ ∈ ×i∈IΣi s.t. ei,ti = σ̄−i(ti, ·) for all i ∈ I, ti ∈ Ti}

RCE(e) = {σ ∈ B(e) : σ̄−i(ti, ·) = ei,ti for all i ∈ I and ti ∈ Ti},
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where:

σ̄−i(t) = (1− χ)σ−i + χ

∫
T−i

σ−i(t−i) dpi(t−i|ti).

It is possible to prove that this solution concept is generally not WSC. Intuitively, the

reason is that the payoff distribution that agents expect to achieve in common-value se-

tups differs from the one the mechanism actually implements. For instance, a fully cursed

(χ = 1) agent i expects the payoff from playing the action associated with type t′i to be∫
T−i

ui(f(t
′
i, ῑ−i), t) dpi(t−i|ti) rather than

∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti), where ι represents

the identity function. While the difference between these two expressions is immaterial for

private-value setups, it typically is not for common-value ones.

To prove WSC is violated as well for any χ ∈ (0, 1], we can construct the following

two-player game:

Player C
A B

Player R
A tR, tC tR + ζtC , 0
B 0, tC + ζtR 0, 0

Where ti ∈ {−1, 1} for i ∈ {R,C}, each type profile happens with equal probability,

and ζ ∈ (2, 2
1−χ).

28 The only Cursed Equilibrium of this game is for type 1 to play A and

for type −1 to play B.

The payoff of B is always 0 for either player. The payoff i expects from playing A is:

ti −
1

2
(1− χ)ζ(σ−i(1)[A]− σ−i(−1)[A]).

Type 1 will play A with probability 1 as:

1− 1

2
(1− χ)ζ > 0 ⇐⇒ ζ <

2

1− χ
.

28In the discussion below, the argument focuses on the case of χ < 1. The case of χ = 1 follows
from the same steps as long as ζ > 2.
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And type ti = −1 will play B with probability 1 as:

−1− 1

2
(1− χ)ζ < 0 ⇐⇒ ζ >

−2

1− χ
.

There is therefore a pure Cursed Equilibrium in which both agents play A if their type is

ti = 1 and B otherwise. Moreover, this is the unique Cursed Equilibrium of the game, and

it does not satisfy WSC. In fact, for type ti = 1 of player i, ζ > 2 implies that:

1

2
ti +

1

2
(ti − ζ) = 1− 1

2
ζ < 0.

Thus, type ti = 1 would like to mimic type ti = −1 if she was not ignoring the correla-

tion between her opponents’ strategies and types: Cursed Equilibrium then allows for the

implementation of non-BIC SCFs.

5.5 Self-Similarity Equilibrium

To demonstrate the usefulness of our approach, we will discuss another solution concept

that has not yet been studied in the implementation literature, aiming to capture the fact

that agents believe their opponents’ actions are more similar to their own than they actually

are—that is, agents project their own actions on their opponents (Rubinstein and Salant,

2016).

Let Γ∗ be the class of all mechanisms such that Si = S∗ for all i ∈ I. For each γ ∈ Γ∗

and χ ∈ (0, 1) we then define a self-similarity equilibrium:

ESSE(γ) = {e ∈ E(γ) : ∃ σ ∈ ×i∈IΣi s.t. ei,ti = (σ̃j
i,ti

)j ̸=i for all i ∈ I, ti ∈ Ti}

RSSE(e) = {σ ∈ B(e) : ei,ti = (σ̃j
i,ti

)j ̸=i for all i ∈ I, ti ∈ Ti},
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where for all i ∈ I, j ̸= i and t−i ∈ T−i:

σ̃j
i,ti

(t−i) = (1− χ)σj(t−i) + χσi(ti).

The definition of ESSE captures the fact that agents expect their opponents’ actions to be

closer to their own than they actually are: an agent’s expectations are a linear combination

of their opponents’ actual strategy and of her own mixed action.

We can prove SSE is not a WSC solution concept by considering the setup of Section 5.4

again. As before, the expected payoff of B is always 0 for either player. The payoff i expects

from playing A is:29

ti −
1

2
(1− χ)ζ(σ−i(1)[A]− σ−i(−1)[A]).

So type 1 will play A with probability 1 as:

1− 1

2
(1− χ)ζ > 0 ⇐⇒ ζ <

2

1− χ
.

And type ti = −1 will play B with probability 1 as:

−1− 1

2
(1− χ)ζ < 0 ⇐⇒ ζ >

−2

1− χ
.

There is, therefore, a unique SSE solution in which an agent of type 1 play A with probability

1 and an agent of type −1 plays B with probability 1. As above, the SCF this solution

induces is not BIC for the values of ζ considered.

29While the expected payoff is the same as in the Cursed Equilibrium case, the rationale is different:
here agents underestimate the correlation between opponents’ actions and types as they overestimate
the correlation between their own actions and their opponents’ ones.
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6 Applications

The results in previous sections allow us to extend the results stemming from the necessity of

BIC for implementation to all WSC solution concepts. We take as examples three classical

results from the mechanism design literature: the impossibility of efficient bilateral trade

(Myerson and Satterthwaite, 1983), the impossibility of full surplus extraction in auctions,

and the Revenue Equivalence Theorem (Myerson, 1981). Our results confirm that the

economic intuition behind these results extends to a wide range of boundedly rational

setups.

6.1 Myerson-Satterthwaite’s Impossibility Theorem

Myerson and Satterthwaite (1983) show that efficient bilateral trade is impossible in the

presence of private information, unless the planner steps in to cover some of the losses

the agents face. As this result relies on the necessity of BIC for implementation in BNE,

Theorem 1 allows us to extend it to all WSC solution concepts.

As in Myerson and Satterthwaite (1983), we consider a bargaining problem in which

two agents (a buyer B and a seller S) bargain over the sale of an indivisible object that each

agent values at ti, where each ti’s distribution admits a continuous and positive pdf over

the interval [ai, bi], where (aS , bS) ∩ (aB, bB) ̸= ∅. We also assume that tB is independent

of tS and that each agent knows her valuation and how the valuation of the other agent is

distributed. The set of alternatives consists of all pairs (q, x), where q ∈ [0, 1] represents the

probability that trade will happen and x indicates the amount transferred from the buyer

to the seller. Bernoulli utilities ui are additively separable in money and the value of the

object, and agents are risk neutral.

Under these assumptions, Myerson and Satterthwaite (1983) prove that an implementing

mechanism that assigns an object to the agent who values it the most is unable to ensure

voluntary participation by both agents. Formally, an SCF is ex-post efficient if it allocates

the object with probability 1 to the agent who values it the most—that is, q(t) = 1 whenever
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tB > tS , and q(t) = 0 whenever tB < tS . Moreover, we say f is individually rational

whenever ui(f(t), t) = q(t)ti − x(t) ≥ 0 for all i ∈ I and t ∈ T .

Myerson and Satterthwaite’s (1983) proof relies on showing there exists no SCF f that

is simultaneously individually rational, ex post efficient, and BIC. The following corollary

then follows immediately from Theorem 1:

Corollary 1. If f is individually rational and ex-post efficient, it is not fully implementable

in any WSC S.

Myerson and Satterthwaite (1983) highlight that it is impossible to find an ex-post

efficient and individually rational SCF that is also incentive compatible for all types and

agents at the same time. This finding extends the negative results de Clippel et al. (2019)

and Crawford (2021) obtain for full implementation of SCFs in level-k reasoning.

Kneeland (2022) shows instead it is possible to fully implement an efficient and individ-

ually rational social choice set. Each agent can believe a different solution of the mechanism

will obtain when F is not a singleton, allowing the planner to decouple the incentives she

provides. That is, F must contain one SCF that is incentive compatible for each agent and

type, but needs not contain an SCF that is incentive compatible for all types of all agents

at the same time.

6.2 Impossibility of Full Surplus Extraction

If S is WSC, the planner cannot implement any auction extracting all expected surplus

from agents unless she excludes lower-ranked types from winning the object.

Suppose the planner is tasked with designing a mechanism to allocate a single unit of

an indivisible object in exchange for the payment of a fee. Let the set of alternatives be

defined as follows:

A = {(q, x) ∈ [0, 1]I × RI :
∑
i∈I

qi ≤ 1}
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That is, f(t) assigns to each agent some probability of winning the object and a (non-

contingent) monetary transfer. For a given f , denote as qfi (t) the probability that agent

i receives the object and denote as xfi (t) the associated transfer to the planner from the

agent getting the object. Assume, moreover, that T ⊆ RI and types are determined by

a commonly known joint distribution. The value of the object to agent i is determined

according to a function vi that is strictly increasing in i’s type, and Bernoulli utilities take

the additively separable form ui(t) = vi(t)− xi.

We then say a SCS F is fully extractive whenever the planner extracts the entire surplus

in all states—that is, whenever xfi (t) = qfi (t)vi(t) for all t ∈ T and f ∈ F . Moreover, we

say F is inclusive whenever, for all f ∈ F and i ∈ I there exists t ∈ T and t′i ∈ Ti such

that t′i > ti and qfi (t) > 0. Inclusivity requires that f does not prevent all types ti that are

ranked lower than t′i from getting the object with positive probability no matter the type

profile t−i of other agents—that is, there must exist at least one type profile t−i such that

type ti wins the object with positive probability. Ex-post efficient allocation rules are an

example of a SCFs satisfying this property.

We can then prove there exists a tradeoff between inclusivity and total surplus extrac-

tion.

Corollary 2. If F is fully extractive and inclusive, then it is not implementable in any

WSC S.

The result follows because inclusivity and complete extraction of surplus entail each type

has an incentive to pretend the object is worth less to her than it actually is. This creates

a tension with implementability in a WSC solution concept, which implies instead there

exists at least one SCF in F providing each agent with the incentive not to misrepresent

her type. This should be contrasted with the result in the previous example, which follows

instead from the fact that the same SCF has to be simultaneously incentive compatible for

all types of all agents as in the application above. The impossibility faced in this application

is therefore harder to escape than the in the application in Section 6.1.
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6.3 A Revenue Equivalence Theorem

Our results also allow us to extend Myerson’s (1981) fundamental result about revenue

equivalence of different auction formats to all SCFs that are fully implementable in a WSC

solution concept.

As in Myerson (1981), let us assume that agents’ values are drawn from set [ai, bi] ⊆ R+
0

according to a commonly known distribution, that agents are risk neutral, that their utility

is additively separable in money and the value of the object, and that vi : Ti → R+ is

non-negative, increasing, and differentiable in ti for all i ∈ I (this is the case, for example,

if vi(ti) = ti).

Let q̄fi (ti) and x̄fi (ti) denote respectively the average probability of winning and the

average transfer for an agent of type ti. An SCF f = (q, x) is differentiable if both q̄i

and x̄i are differentiable in ti for all i ∈ I almost everywhere, and two SCFs f and f̃ are

assignment-equivalent if qf = qf̃ almost everywhere. Notice that if f is ex-post efficient

and agents’ values are independently and identically distributed according to a cdf G, then

q̄f is differentiable as q̄f (ti) = Gn−1(ti). Moreover, if f and f̃ are both ex-post efficient and

the distribution of values atomless, f and f̃ they are assignment-equivalent as the object

always goes to the agent with the highest value and the probability of a tie is null.

Corollary 3. If differentiable and assignment-equivalent SCFs f and f̃ are fully imple-

mentable in WSC S, then x̄fi (ti)− x̄fi (ai) = x̄f̃i (ti)− x̄f̃i (ai) for all i ∈ I.

Corollary 3 establishes a generalized version of the standard Revenue Equivalence The-

orem of Myerson (1981), stating that the revenue of a given SCF f is determined by its

allocation probability q up to an additive constant x̄f (ai). If we standardize the average

payment of type ai to 0, we obtain the familiar result that any two rules f and f̃ that are

fully implementable in SC S (and their associated implementing mechanisms—for exam-

ple, auctions) will yield the same ex-ante revenue to the planner unless they differ in the

probability with which each type gets allocated the object.
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Appendix A Generalized Model

Non-standard Choice Correspondences

This section relaxes the assumption that agents best respond to their expectations, general-

izing the results in the main body of the paper beyond the domain of von Neumann–Morgenstern

preferences.

We can interpret the revelation principle as saying that some lotteries in the choice sets

induced by an indirect implementing mechanism (but not in the direct one) can be safely

neglected, as they are not going to be relevant. Formally, this requires that restricting

the choice set of an agent of type ti to the set of lotteries that would be a solution of

the mechanism for some type t′i ∈ Ti does not affect her choice. This will require us to

impose some form of Contraction Consistency, or Independence of Irrelevant Alternatives

(see, for example, Property α of Sen (1971)). In the argument below, we only maintain the

assumption that agents are consequentialist—that is, that their choices depend only on the

set of alternatives they choose from.30

As in Saran (2011) and Barlo and Dalkıran (2023), we model individual strategic de-

cisions, for all i ∈ I, as choices over a set of interim Anscombe-Aumann acts (IAA acts)

xi : T−i → ∆(A). Denote as X the set of all IAA acts. Notice that, for all i and ti,

f(ti, ·) ∈ X .

We can then define a choice correspondence Ci,ti as mapping each non-empty subset

X of X to a subset of ∆(X). That is, for all X ⊆ X , Ci,ti(X) ⊆ ∆(X). As in Barlo

and Dalkıran (2023) and unlike in Saran (2011), we do not assume Ci,ti is generated by a

menu-dependent preference order.

Notice that for any given si ∈ ∆(Si) and σ−i ∈ Σ−i, the function µ(si, σ−i) is an IAA

act. We can then denote the set of acts agent i of type ti chooses from given her expectations

30This rules out, for example, preferences for truth-telling.
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as follows:

Oi(σ−i) = {xi ∈ X : xi = µ(si, σ−i), si ∈ ∆(Si)}

As in previous sections, we say si ∈ ∆(Si) is a reply to σ−i for type ti whenever si ∈

Ri,ti(σ−i) ⊆ µ−1(Ci,ti(Oi(σ−i))). That is, the outcome of the actions chosen as a response

to σ−i is a subset of what agent i of type ti would choose from the set of acts Oi(σ−i). Notice

that µ−1(Ci,ti(Oi(σ−i))) coincides with the set Bi,ti considered in the main text in case the

agent maximizes expected utility given σ−i. We then say σ is a solution of a mechanism γ

whenever there exists e ∈ E(γ) such that σ ∈ R(e).

Let Of,ti
i denote the set of IAA acts that agent i can generate in the direct mechanism

(f, T ) when her opponents truthfully report their type:

Of,ti
i =

{
xi ∈ X : xi ∈ f(t′i, ι−i) where t′i ∈ Ti

}
Incentive Compatibility can then be generalized as in Saran (2011):

Definition 3 (Incentive Compatibility (IC)). Let Ci,ti be given. We say f satisfies IC for

type ti ∈ Ti and i ∈ I whenever f(ti, ·) ∈ Ci,ti(O
f,ti
i ). We say f is IC whenever it is IC for

all ti ∈ Ti and i ∈ I.

In other words, we require agents to choose the act associated with their type ti when

they expect their opponents to choose the acts associated with their types as well. In the case

of BIC, this coincides with the set of acts maximizing expected utility in the choice set. To

derive our main result for this section, we redefine WSC in terms of choice correspondences

rather than utility maximization.

Definition 4 (Weak Choice Consistency (WCC)). We say a solution concept S satisfies

WCC for a class of mechanisms Γ̃ ⊆ Γ whenever for all γ ∈ Γ̃, i ∈ I, ti ∈ Ti there exists

σ ∈ S(γ) such that µ(σi(ti), σ−i) ∈ Ci,ti(Xi(σ−i)), where:

Xi(σ−i) = {xi ∈ X : xi = µ(σi(t
′
i), σ−i) with t′i ∈ Ti}.
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We say S satisfies WCC if it satisfies WCC for all γ ∈ Γ such that S(γ) ̸= ∅.

It is immediately possible to extend Theorem 3 and, when F is a singleton, Theorem 1.

Theorem 6. If F is implementable in WCC S, then for all i ∈ I and ti ∈ Ti there exists

an f i,ti ∈ F that is IC for i and ti. Conversely, if F is implementable and there exists an

f i,ti ∈ F that is IC for i and ti, then S is WCC for ΓF,S .

Notice that and WCC implicitly assumes a mild form of contraction consistency be-

tween choices in Oi(σ−i) and in Xi(σ−i). In fact, if σ ∈ S(γ) is such that µ(σi(ti), σ−i) ∈

Ci,ti(Oi(σ−i)) and Xi(σ−i) ⊆ Oi(σ−i), WCC entails that µ(σi(ti), σ−i) ∈ Ci,ti(Xi(σ−i)).

This implicit assumption means it is not as easy to provide a sufficient condition for

WCC as it was for WSC. Let us parallel the definition of SC and say S is Choice Consistent

(CC) for mechanism γ whenever for all i ∈ I and ti ∈ Ti there exist e, e′ ∈ E(γ) and

σ ∈ R(e) such that (σi, ei,ti) ∈ R(e′). While this entails µ(σi(ti), ei,ti) ∈ Ci,ti(Oi(ei,ti)), it is

not enough to establish WCC as it does not preclude the possibility that µ(σi(ti), ei,ti) ̸∈

Ci,ti(Xi(ei,ti)). Without any form of contraction consistency, CC just implies that for all

i ∈ I and ti ∈ Ti there exists f ∈ F and O ⊆ X such that Of,ti
i ⊆ O and f(ti, ·) ∈ Ci,ti(O).

Using Barlo and Dalkıran’s (2023) terminology, we can say f is quasi-incentive compatible

(QIC) for agent i of type ti.

Chernoff (1954) provides an example of a class of choice correspondences ruling out such

a possibility without implying maximization of rational preferences (Sen, 1971). We say a

choice correspondence Ci,ti satisfies Independence of Irrelevant Alternatives (IIA) whenever

for all X,Y ⊆ X :

Ci,ti(X) ⊆ Y ⊆ X =⇒ Ci,ti(X) ⊆ Ci,ti(Y ).

By IIA, if S(γ) is CC then it is WCC as µ(σi(ti), ei,ti) ∈ Ci,ti(Oi(ei,ti)) and:

Ci,ti(Oi(ei,ti)) ⊆ Xi(ei,ti) ⊆ Oi(ei,ti) =⇒ Ci,ti(Oi(ei,ti)) ⊆ Ci,ti(Xi(ei,ti)).
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It is immediately possible to derive the following result by the same argument as in the

main text.

Corollary 4. If F is implementable in CC S, then there exists an f i,ti ∈ F that is QIC for

type ti and agent i. If, moreover, Ci,ti satisfies IIA, f i,ti is IC for type ti and agent i.

These results allow us to extend the findings of de Clippel et al. (2019) and Kunimoto

et al. (2023) about level-k and rationalizable implementation to all consequentialist choice

correspondences.31 To this end, it is enough to tweak the definitions of the solution concepts

in the main text by replacing the assumption R ⊆ B with R ⊆ µ−1(Ci,ti(Oi(σ−i))). In par-

ticular, we can say IC is necessary for implementation in these solution concepts whenever

C is IIA.

A limitation of this analysis is in the assumption that agents’ choices depend only

on the menu of acts they choose from. This assumption rules out, for instance, Quantal

Response Equilibrium(McKelvey and Palfrey, 1995) and Sampling Equilibrium (Osborne

and Rubinstein, 1998). In these models, agents’ choices depend not only on the menu of

available acts but on the number of times an act appears in the menu. We can accommodate

these models by relaxing the assumption that, for all i and ti, Ci,ti ’s domain is the set of

all non-empty sets X ⊆ A and assume instead that Ci,ti ’s domain is the set of all non-

empty bags with support in A.32 We can get the same result as above (with slightly heavier

notation) by adjusting the definitions of IC, QIC, WCC, CC, and IIA accordingly. In this

case, both Sampling Equilibrium and Quantal Response Equilibrium can be considered as

special cases of Behavioral Interim Equilibrium (Barlo and Dalkıran, 2023).

31Barlo and Dalkıran (2023) already extend BNE to non-rational choice correspondences with
their Behavioral Interim Equilibrium (BIE) solution concept.

32A bag, or multiset, is a generalization of the concept of set that allows more than one instance
of each element. Its support is the set of elements that appear at least once.
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Appendix B Proofs

Proof of Theorem 1. Suppose f is implementable in S via mechanism γ = (µ, S), and

suppose S is WSC for γ. Then S(γ) ̸= ∅ and there exists σi,ti ∈ S(γ) such that:

∫
T−i

ui(µ(σ
i,ti(t), t) dpi(t−i|ti) ≥

∫
T−i

ui(µ(σ
i,ti(t′i, t−i), t) dpi(t−i|ti).

As σi,ti ∈ S(γ), implementability of f yields µ(σi,ti) = f . Therefore, for i ∈ I and ti, t
′
i ∈ Ti:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

As our choice of i, ti, and t′i was arbitrary, this is enough to establish that f is BIC.

Conversely, suppose f is BIC and implementable in S via mechanism γ = (µ, S). Then,

for all t′i ∈ Ti and i ∈ I:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, ti), t) dpi(t−i|ti).

As γ implements f , there exists σ ∈ S(γ) such that µ(σ) = f and thus:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

Setting σi,ti = σ for all i ∈ I and ti ∈ Ti concludes the proof.

Proof of Theorem 2. To prove we can strengthen the result of Theorem 1 to SIRBIC, we

proceed by contradiction and suppose that, indeed, the incentive constraint holds with

equality for some agent i ∈ I and types ti, t
′
i ∈ Ti:

∫
T−i

ui(f(t), t) dpi(t−i|ti) =
∫
T−i

ui(f(t
′
i, ti), t) dpi(t−i|ti).

As f is implementable in S, there exists a solution σ of mechanism γ such that µ(σ) = f .
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Define τ : T → Σ as agreeing with σ except that τ(t) = σ(t′i, t−i) for all t−i ∈ T−i. As

σ ∈ S(γ), there exist e such that σ ∈ B(e). Given τ yields the same expected utility as

σ conditional on expectations e, σ ∈ B(e) implies τ ∈ B(e). Then by the definition of

implementation above, for all t−i ∈ T−i:

f(ti, t−i) = µ(τ(t)) = µ(σ(t′i, t−i)) = f(t′i, t−i).

This concludes the proof.

Proof of Theorem 3. Suppose F is implementable in WSC S via mechanism γ = (µ, S) with

S(γ) ̸= ∅. Then for each i ∈ I and ti ∈ Ti, there exists σi,ti ∈ S(γ) such that for all t′i ∈ Ti:

∫
T−i

ui(µ(σ
i,ti(t), t) dpi(t−i|ti) ≥

∫
T−i

ui(µ(σ
i,ti(t′i, t−i), t) dpi(t−i|ti).

As σi,ti ∈ S(γ), implementability of F yields µ(σi,ti) = f i,ti for some f i,ti ∈ F . Therefore,

for all t′i ∈ Ti:

∫
T−i

ui(f
i,ti(t), t) dpi(t−i|ti) ≥

∫
T−i

ui(f
i,ti(t′i, t−i), t) dpi(t−i|ti).

This is enough to prove f i,ti is BIC for agent i and type ti.

As for the converse, suppose F is implementable in S via mechanism γ and suppose

that for all i ∈ I and ti ∈ Ti there exists an f i,ti ∈ F that is BIC for agent i and type ti.

Then for each such f i,ti , i, and ti there exists a solution σi,ti such that f i,ti = µ(σi,ti). A

simple substitution in the BIC inequality then yields that WSC holds.

Proof of Theorem 4. If F is implementable in S, then any f ∈ F is such that f = µ(σ)

for σ ∈ S. As S is TWSC, it is immediate that f is BIC from the definition of TWSC

by substituting f = µ(σ). Conversely, suppose F is implementable in S. As any σ ∈ S is

such that µ(σ) ∈ F , TWSC follows immediately from the fact that all functions f ∈ F are

BIC.
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Proof of Theorem 5. Suppose F is implementable in SC S, and suppose E is type-independent.

By SC, for all i ∈ I there exists e ∈ E(γ) and σ ∈ R(e) such that (σi, ei) ∈ S(γ). Then for

all t′i ∈ Ti, by σ ∈ R(e) ⊆ B(e) it is true that:

∫
T−i

ui(µ(σi(ti), ei(t−i)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σi(t
′
i), ei(t−i)), t) dpi(t−i|ti).

For each i ∈ I, let f = µ ◦ (σi, ei). By SC, µ ◦ (σi, ei) ∈ F , so f ∈ F . Moreover:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

This entails that f is BIC for all types of agent i. This concludes the proof.

Proof of Corollary 2. We now show that supposing F is implementable in WSC S leads to

a contradiction. Consider any agent i ∈ I. By inclusivity, for each f ∈ F there exist types

ti, t
′
i ∈ Ti such that qfi (t

′
i, t−i) > 0 and ti > t′i for some profile t−i. By WSC and Theorem 3,

we then know that if F is implementable in S, for all i ∈ I and ti ∈ Ti, then there exists

an f ∈ F that is BIC for i and ti. Therefore, for all i ∈ I, ti ∈ Ti and t′i < ti, full surplus

extraction implies:

0 =

∫
T−i

(qfi (t)vi(t)− qfi (t)vi(t)) dpi(t−i|ti) ≥
∫
T−i

qfi (t
′
i, t−i)(vi(t)− vi(t

′
i, t−i)) dpi(t−i|ti)

As vi is strictly increasing in i’s type and F is inclusive:

∫
T−i

qfi (t
′
i, t−i)(vi(t)− vi(t

′
i, t−i)) dpi(t−i|ti) > 0.

This inequality contradicts the fact that f is BIC for i and ti, concluding the proof.

Proof of Corollary 3. As f is implementable in S WSC, it is BIC. So t∗i = ti must maximize

the payoff function q̄f (t∗i )vi(ti)− x̄fi (t
∗
i ). A necessary condition for a maximum is that the

first derivative with respect to vi of this function is null at ti—that is, ∂x̄f (ti)
∂ti

= ∂q̄f (ti)
∂ti

vi(ti).
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Then:

x̄(ti)− x̄(ai) =

∫ ti

ai

vi(t
′
i)
∂q̄f (t′i)

∂ti
dt′i.

Analogous reasoning for f̃ and assignment-equivalence yield x̄f (ti)−x̄f (ai) = x̄f̃ (ti)−x̄f̃ (ai),

concluding the proof.

Proof of Theorem 6. Suppose F is implementable in WCC S via mechanism γ = (µ, S) with

S(γ) ̸= ∅. Then for each i ∈ I and ti ∈ Ti there exists σ ∈ S(γ) such that µ(σi(ti), σ−i) ∈

Ci,ti(Xi(σ−i)), where:

Xi(σ−i) = {xi ∈ X : xi = µ(σi(t
′
i), σ−i) with t′i ∈ Ti}.

As σ ∈ S(γ), implementability of F yields µ(σ) = f for some f ∈ F . Then:

Xi(σ−i) = {xi ∈ X : xi = µ(σi(t
′
i), σ−i) = f(t′i, ·), t′i ∈ Ti} = Of,ti

i .

Then f(ti, ·) = µ(σi(ti), σ−i) ∈ Ci,ti(Xi(σ−i)) = Ci,ti(O
f,ti
i ), which is enough to prove f ∈ F

is BIC for agent i and type ti.

As for the converse, suppose F is implementable in S via mechanism γ and suppose

that for each i ∈ I and ti ∈ Ti there exists an f ∈ F that is IC for agent i and type ti. As

f is IC for i and ti, f(ti, ·) ∈ Ci,ti(O
f,ti
i ). Moreover, as F is implementable, there exists a

solution σ ∈ S(γ) such that f = µ(σ). Then:

Of,ti
i = {xi ∈ X : xi = f(t′i, ·) = µ(σi(t

′
i), σ−i) with t′i ∈ Ti} = Xi(σ−i).

This entails that for each i and ti there exists σ ∈ S(γ) such that µ(σi(ti), σ−i) ∈ Ci,ti(Xi(σ−i)).

As our initial choice of i and ti was arbitrary, this concludes the proof.
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