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Abstract

Is incentive compatibility still necessary for implementation if we relax the rational

expectations assumption? This paper proposes a generalized model of implementation

that does not assume agents hold rational expectations and characterizes the class

of solution concepts requiring Bayesian Incentive Compatibility (BIC) for full imple-

mentation. Surprisingly, for a broad class of solution concepts, full implementation

of functions still requires BIC even if rational expectations do not hold. This finding

implies that some classical results, such as the impossibility of efficient bilateral trade

(Myerson & Satterthwaite, 1983), hold for a broader range of non-equilibrium solution

concepts, confirming their relevance even in boundedly rational setups.
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1 Introduction

Can a planner implement a given social goal by designing rules of interaction between

agents when these agents hold private information they can exploit to their advantage?

The answer depends on how this interaction pans out, and the literature on mechanism

design and implementation has extensively explored this problem using a variety of game-

theoretic solution concepts.

While Bayesian Nash Equilibrium (BNE) remains a popular solution concept, insights

from the experimental and behavioral literatures have highlighted that equilibrium models

may not accurately predict agents’ behavior in many settings. In these settings—for in-

stance, when agents face a given interaction for the first time—the assumption that agents

correctly anticipate their opponents’ strategies (that is, that agents have rational expecta-

tions) feels particularly unpalatable.

It remains unclear whether alternative solution concepts allow full implementation of a

broader class of social choice rules than BNE. Recent results about full implementation of

social choice functions (SCFs) in non-equilibrium solution concepts suggest that the answer

may be negative. For instance, de Clippel et al. (2019) and Kunimoto et al. (2023) prove

that Bayesian Incentive Compatibility (BIC) is still necessary for full implementation of

functions in level-k reasoning and interim correlated rationalizability (ICR). In contrast,

results are more permissive for full level-k implementation of social choice sets (SCSs), for

which BIC is no longer necessary (de Clippel et al., 2019).1

This paper studies the limits of full implementation by characterizing the class of all

solution concepts such that BIC is necessary for full implementation. Our results suggest

that we can generally not expect to dramatically expand the set of implementable SCFs by

moving to non-equilibrium solution concepts, while results about SCSs are more permissive.

1Results are more permissive for partial implementation of SCFs, as shown in Crawford (2021)
and Kneeland (2022).
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Our novel approach turns on its head implementation theory’s standard approach of

fixing a solution concept and then deriving necessary conditions for full implementation,

allowing us to search for a deeper property linking all solution concepts requiring BIC

for full implementation. Other than providing useful guidance about the possibility of

implementing non-BIC social choice rules, these results allow us to extend some classical

findings in the literature (for example, Myerson and Satterthwaite’s (1983) impossibility

theorem) to a large class of solution concepts.

To achieve this goal, we propose a generalized model of full implementation that allows

agents to hold arbitrary expectations about their opponents’ strategies. This model allows

us to encompass all solution concepts in which agents best respond to their (possibly hetero-

geneous) expectations about their opponents. Our model nests the ones in Jackson (1991),

de Clippel et al. (2019), Crawford (2021), Kneeland (2022), and Kunimoto et al. (2023) as

special cases, unifying previous results about the necessity of BIC for full implementation.

For the case of implementation of SCFs, we show BIC is still necessary to implement

functions if and only if the solution concept satisfies a novel property we call Weak Solution

Consistency (WSC). This property can be interpreted as requiring that, for each type of

each agent, there exists a solution of the mechanism such that she does not have any

incentive to mimic a different type. Unlike regular incentive compatibility, WSC does not

imply that this solution is the same for all types of all agents.2 Even if this property is not

very restrictive, it is enough to establish the necessity of BIC, as full implementation of a

function requires all the mechanism’s solutions to yield the outcome prescribed by the SCF.

Several solution concepts in the literature satisfy WSC—for instance, the level-k model

of de Clippel et al. (2019), ICR (Kunimoto et al., 2023), and BNE (Jackson, 1991) satisfy

this condition for any given mechanism. Notably, in the spirit of the so-called Wilson

Doctrine, WSC (and thus the necessity of BIC) does not hinge on the assumption of common

knowledge of rationality. The epistemic argument in the Online Appendix shows that WSC

2See discussion at the end of Section 2.
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is almost equivalent to requiring each type of each agent to know the type space and

that she can mimic another type by inducing a different solution of the mechanism. Both

requirements feel natural, confirming that WSC is a mild restriction and that the class of

solution concepts satisfying WSC is rather large.

By providing a characterization of the set of solution concepts that allow implementation

of BIC SCFs, this paper also identifies which solution concepts allow for implementation of

non-BIC functions. Cursed Equilibrium (CE; Eyster and Rabin 2005) and Näıve Bayesian

Equilibrium (NBE; Gagnon-Bartsch et al. 2021) fall into the latter category, as they do

not rule out the possibility that agents might not realize they could profitably mimic a

different type. Existence of non-WSC solution concepts confirms that WSC has bite, and

the characterization result hints at which solution concepts may be fruitful to investigate

to study implementation of non-BIC SCFs.

Social Choice Functions

All Solution Concepts

WSC = NecBIC

Level-k

BNE

ICR

CENBE

Social Choice Sets

All Solution Concepts

WSC

NecBIC

Level-k

BNE

CENBE

ICR

Figure 1: The class of solution concepts such that BIC is necessary for implementation (NecBIC)
of all SCFs coincides with the class of WSC solution concepts for full implementation of SCFs (left)
and it is a subset of the class of WSC solution concepts for full implementation of SCSs (right).

As for implementation of SCSs, WSC is not enough to establish the necessity of BIC

for full implementation (Figure 1).3 The necessity of BIC for implementation of SCSs

turns out to be close to assuming rational expectations. This, then, is a relatively fragile

3The solution concept of de Clippel et al. (2019) is a case in point: even if their level-k reasoning
model satisfies WSC, they show in their Example 2 that it is possible to implement non-BIC SCSs.
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result, unlikely to hold for most non-equilibrium models. WSC implies, however, that any

implementable SCS must contain partially incentive compatible SCFs—that is, SCFs that

provide only some types and agents with the right incentives not to misrepresent their

private information. This last result confirms and extends the findings of Kneeland (2022)

for level-k reasoning models.

The contrast between the results for implementation of SCFs and SCSs suggests that

the necessity of BIC is mainly driven by the requirement that all solutions of the mechanism

yield the same SCF when rational expectations do not hold. As agents understand that

all solutions will lead to the same outcome in the case of implementation of SCFs, the

same SCF must provide incentives to all agents not to misrepresent their type (that is,

it must be BIC). If we allow different solutions to yield different outcomes instead (as in

the case of full implementation of SCSs), each type may believe a different solution of the

mechanism (and the associated SCF) will obtain. The planner no longer needs the same

SCF to simultaneously incentivize all types of all agents, unless rational expectations hold.

In a sense, decoupling agents’ expectations allows the planner to decouple the incentives she

provides them. As the rational expectations assumption makes this decoupling impossible,

BIC is necessary for implementation in equilibrium solution concepts.

This discussion highlights a new tension that behavioral mechanism design faces: while

having a unique outcome for all solutions offers starker predictions in applications, it of-

ten delivers restrictive results regarding incentive compatibility. This tension is absent in

equilibrium solution concepts: regardless of the number of solution outcomes, the rational

expectations assumption ensures BIC is necessary for implementation. This result follows

again from the fact that both the uniqueness requirement and the rational expectations

assumption do not allow the planner to decouple the incentives she provides to each agent

from the ones she provides to other agents.

These results are important as they allow us to extend classical mechanism design find-

ings to full implementation in any WSC solution concept. For the case of full implemen-
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tation of functions, Section 6 considers three applications that extend to all WSC solution

concepts: the Revenue Equivalence Theorem (Myerson, 1981), the impossibility of ex-post

efficient and budget-balanced bilateral trade (Myerson and Satterthwaite, 1983), and the

impossibility of full surplus extraction in auctions. These applications highlight that much

of the underlying economic intuition for these results does indeed not hinge on the rational

expectations assumption or the use of a particular equilibrium solution concept per se, and

it remains central for the case of boundedly rational agents as well.

This paper advances the literature on mechanism design and bounded rationality by

providing a methodology to answer open questions about implementation with and without

rational expectations. Unlike previous works, this paper investigates the robustness of the

necessity of BIC to changes in the solution concept. Previous papers focused instead on

robustness in other model features—for example, Saran (2011) characterizes the domain of

preferences on which the revelation principle holds, while Artemov et al. (2013) prove that

the restrictiveness of robust virtual implementation stems from a particular zero-measure

set of beliefs. This work also relates to approaches considering a planner with an inaccurate

model of agents’ payoffs and beliefs, and in particular the literature about continuous (Oury

and Tercieux, 2012; de Clippel et al., 2023) and robust (Bergemann and Morris, 2005)

implementation. However, this paper focuses on a planner with an accurate model of

payoffs and beliefs who is not sure how these map to the outcomes of strategic interaction,

and it studies how sensitive restrictions on the set of implementable SCFs (such as BIC)

are to changes in this mapping.

Our approach is relevant to the study of different implementation frameworks or nec-

essary conditions as well. For instance, de Clippel et al. (2023) show that imposing the

continuity requirement on level-k implementation does not make it significantly more re-

strictive as it does for BNE implementation. This result could be extended by characterizing

the class of solution concepts for which it holds, highlighting what properties of the solu-

tion concept cause continuous implementation to impose significant additional restrictions
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on the class of implementable SCFs.

2 Model

The goal of the social planner is to select an alternative from a set A, conditional on some

information privately held by the agents in set I. As usual in the literature, incomplete

information is modeled by assuming that there exists a set of types Ti for each agent i ∈ I

and that each agent knows her type but not the type of other players. Let T = ×i∈ITi be

the set of all possible type profiles.

Agents’ (interim) beliefs about the types of their opponents are denoted as pi : Ti →

∆(T−i)—that is, when an agent is of type ti, she believes other players are of types t−i

with probability pi(t−i|ti).4 Assume also that for all t ∈ T , there exists t ∈ T such that

t−i belongs to the support of pi(·|ti).5 Preferences over lotteries have expected utility form,

with Bernoulli utility ui : A × T → R. Abusing notation slightly, let ui(a, t) for a ∈ ∆(A)

denote the utility agent i derives from lottery a when the type profile is t.

The social planner seeks to implement a social choice function f : T → ∆(A), and she

does so by designing a mechanism γ = (µ, S), where S = ×i∈ISi is an action space and

µ : S → ∆(A) is an outcome function. Let Γ denote the set of all possible mechanisms

the planner can design. Once the planner has committed to a mechanism, agents choose

a strategy profile σ : T → ∆(S). We denote the set of such functions as Σ. For all i ∈ I,

we let Σi denote the set of all functions σi : Ti → ∆(Si) and all functions Σ−i denote the

set of σ−i : T−i → ∆(S−i). For the rest of the paper, we slightly abuse the notation above

by considering µ(σ(t)) to denote the lottery over A induced by σ(t) under the outcome

function µ.

4For example, we can take pi(t−i|ti) to be the Bayesian posterior stemming from a common prior
distribution q : T → (0, 1) such that q(T ) = 1.

5This assumption is not necessary for the argument, but it makes the notation more convenient
by avoiding stating results in terms of equivalent SCFs.
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Define a solution concept S as a correspondence mapping each mechanism γ to a sub-

set of the set of all strategy profiles Σ.6 We then say an SCF f is fully implementable

whenever (1) there exists a mechanism γ that has at least one solution and (2) every such

solution yields the outcome prescribed by f . Formally, an SCF f is fully implementable in S

whenever there exists an implementing mechanism γ such that S(γ) ̸= ∅ and µ(S(γ)) = f .

Moreover, let Γf,S ⊆ Γ denote the class of all such mechanisms. Similarly, an SCS F ̸= ∅ is

fully implementable if there exists γ such that S(γ) ̸= ∅ and µ(S(γ)) = F . we denote the

class of mechanisms implementing F as ΓF,S ⊆ Γ.

For the remainder of the paper, we will refer to full implementation simply as im-

plementation unless otherwise specified. We will moreover refer to the requirement that

µ(S(γ)) = f as the uniqueness requirement, as it demands that all solutions of the mecha-

nism yield the very same SCF.

We say an SCF f ∈ F is Bayesian Incentive Compatible (BIC) for agent i of type ti

whenever, for all t′i ∈ Ti:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

That is, type ti of agent i has no incentive to pretend to be of a different type in the direct

mechanism associated with the SCF. Moreover, let us say f is BIC whenever it is BIC for

all i ∈ I and ti ∈ Ti, and that an SCS F is BIC whenever all f ∈ F are BIC.

Similarly, we say f is Strict-if-Responsive Bayesian Incentive Compatible (SIRBIC) for

type ti of agent i ∈ I whenever it is BIC for ti ∈ Ti and the inequality above is strict for

all t′i ̸= ti such that f(t′i, t−i) ̸= f(t) for some t−i ∈ T−i. Again, f is SIRBIC whenever it is

SIRBIC for all types of all agents, and F is SIRBIC if all SCF f ∈ F are SIRBIC.

We derive most of our results about the necessity of BIC by imposing a mild requirement

6To be precise, S maps the game induced by mechanism γ to a set of solutions. As the set of
players, the type space, and the utility functions are taken as given, for the sake of brevity in the
remainder of the paper let us say S associates each mechanism γ with the set of its solutions S(γ).
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on the solution concept S. This requirement can be interpreted as requiring that for each

type ti of agent i, a solution of the mechanism exists such that she has no incentive to play

the strategy associated with a different type.

Definition 1 (Weak Solution Consistency (WSC)). A solution concept S satisfies WSC

for a class of mechanisms Γ̃ ⊆ Γ whenever for all γ ∈ Γ̃ i ∈ I, ti ∈ Ti there exists σ ∈ S(γ)

such that for all t′i ∈ Ti:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

We say S satisfies WSC if it satisfies WSC for all γ ∈ Γ such that S(γ) ̸= ∅.

Notice that this solution σ need not be the same for all players i as we do not require

agents’ expectations to be consistent anymore.7. As we allow expectations to be type

dependent, this solution need not be the same for any type ti of player i either.8 This

highlights that WSC is much weaker than incentive compatibility, which instead requires σ

to be the same for all types of all players.9 Moreover, Definition 1 directly implies that S̃

is WSC for Γ̃ ⊆ Γ whenever there exists a WSC solution concept S such that S(γ) ⊆ S̃(γ)

for all γ ∈ Γ̃.

Finally, we make a few additional technical assumptions. To make sure expected utility

is well defined over the spaces discussed in the paper, let A, Ti, and Si be separable metriz-

able spaces endowed with the Borel sigma algebra; let product sets be endowed with the

product topology; let the Bernoulli utility functions be bounded and continuous; and let

SCF, mechanisms and strategies be measurable functions.

7See also Remark 2 in Kneeland (2022).
8About this point, see the discussion of weak Interim Rationalizable Monotonicity in Kunimoto

et al. (2023).
9See also the discussion about Total Weak Solution Consistency in Section 4.2.
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2.1 Modeling Expectations Explicitly

A key feature of rational expectations models is that agents’ expectations turn out to be

correct in equilibrium. For example, if σ is a BNE, player i expects her opponents to play

σ−i: agents expect their opponents to play exactly the strategy they are playing. This is

no longer the case when dispensing the rational expectations assumption: agents may be

responding to an incorrect conjecture about their opponents’ strategies.

It will sometimes be convenient to model more explicitly the expectations agents are

responding to, and how they translate into a solution concept. For a given mechanism γ,

let ei,ti ∈ Σ−i represent the expectations of type ti of agent i about the strategy player

by her opponents. The set of all possible expectations for mechanism γ is denoted as

E(γ) = ×i∈IΣ−i. As ei,ti is a strategy profile for players j ̸= i, we sometimes evaluate it

at t−i; thus, ei,ti(t−i) ∈ ∆(S−i). To make the notation more compact, define a mapping

ei : Ti → Σ−i that assigns ei,ti to each type ti ∈ Ti and denote as e any profile (ei)i∈I ∈ E(γ).

The formulation above implicitly assumes expectations are deterministic. However,

given that we assume agents’ preferences over lotteries admit an expected utility represen-

tation, this assumption does not cause further loss of generality. Agents are also allowed to

expect their opponents’ actions to be correlated as ei,ti ∈ Σ−i, and we do not assume Σ−i

have a product structure. This formulation makes it possible to accommodate models such

as the ICR model of Kunimoto et al. (2023).10

Let a theory of expectations E be any correspondence mapping each mechanism γ to

a subset E(γ) of E(γ). We interpret E(γ) as the expectations the model allows agents

to hold. For example, ICR implicitly rules out the possibility that agents expect one of

their opponents to play a dominated strategy (see Section 5 for some examples of models of

expectations). As in de Clippel et al. (2019) and Kunimoto et al. (2023), we can interpret

E(γ) as the set of expectation profiles the planner believes could happen with nonzero

10See Dekel et al. (2007) for further discussion about the difference between independent and
correlated interim rationalizability.
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probability. This interpretation is reflected in the implementation concept used below,

which requires the outcome prescribed by f to prevail regardless of the expectation profile

considered.

Define a theory of response as any correspondence R : E × γ → Σ. It is easy to see

that the composition S = R ◦ E is then a solution concept: S maps each mechanism γ to

a subset of Σ, which we can interpret as the mechanism’s solutions. Formally, let σ is a

solution to mechanism γ whenever σ ∈ R(e) for e ∈ E(γ).

2.1.1 A Sufficient Condition for WSC

Modeling expectations and responses explicitly enables us to provide a sufficient condition

on S for WSC that is both insightful and easy to check.

For all σ−i ∈ Σ−i, denote as Bi,ti(σ−i) the set of best replies for type ti of i to the profile

σ−i.
11 That is, if si ∈ Bi,ti(σ−i), then for all s′i ∈ ∆(Si):

∫
T−i

ui(µ(si, σ−i(t−i)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(s
′
i, ei,ti(t−i)), t) dpi(t−i|ti).

Let B(e) denote the set of σ ∈ Σ such that for all i ∈ I and t ∈ T , s = σ(t) is such that

si ∈ Bi,ti(ei,ti).

We then say a solution concept S is Solution Consistent (SC) for mechanism γ whenever

R ⊆ B and for all i ∈ I and ti ∈ Ti there exists e ∈ E(γ) and σ ∈ R(e) such that

(σi, ei,ti) ∈ S(γ).12 We can see immediately that if S satisfies SC for mechanism γ, then it

satisfies WSC for the same mechanism. Let us moreover say S is SC whenever it is SC for

all γ ∈ Γ such that S(γ) ̸= ∅.
11The set of best responses should depend on the specific mechanism used as well, but we omit it

to simplify notation.
12As (σi, ei,ti) ∈ S(γ) if and only if there exists e′ ∈ E(γ) such that (σi, ei,ti) ∈ R(e′), we can

equivalently state that SC requires that for all i ∈ I and ti ∈ Ti there exists e, e′ ∈ E(γ) and
σ ∈ R(e) such that (σi, ei,ti) ∈ R(e′).
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Solution Consistency is a rather mild requirement on S, as it requires only that agents

best respond to what they expect from their opponents and that the resulting strategy

profile could be justified as part of a solution to the mechanism. This means we can also

interpret SC as demanding agents believe that their opponents display a minimal level of

rationality: type ti of i responds and expects her opponent to respond to some expectation

profile e′ ∈ E(γ)—that is, (σi, ei,ti) ∈ S(γ).

To make the interpretation above clearer, consider an example in which SC does not

hold. This is the case, for example, if we assume all players are either of level 1 or 0 in the

models of de Clippel et al. (2019), Crawford (2021), and Kneeland (2022). Suppose that, for

all level-0 agents, the anchor is to play a dominated strategy. Then, profile (σi(t
′
i), α−i(t−i))

is not be a solution to the mechanism, generating an inconsistency between the profile level-

1 agents believe would prevail in the mechanism and what the solution concept actually is.

Indeed, assuming all agents can be at least level 2 is crucial to ensure that SC holds for all

γ ∈ Γ (Section 5.1).

3 A Bilateral Trading Example

We can clarify the intuition about BIC’s necessity for full implementation of functions by

considering the example of bilateral trade between level-k parties from Crawford (2021) and

the discussion of said example in de Clippel et al. (2019).

Before moving to the example itself, we summarize how level-k models of behavior work.

Level-0 players of type ti are näıve and (non-strategically) play some anchor αi(ti), which

is exogenous to the model. Level-1 agents instead believe their opponents to be level-0, and

so level-1 agents best respond to the belief their opponents are playing the anchor. We will

say any such best response is a level-1 consistent strategy, denoted as σ1. For every level

ki > 1, agents of level k believe their opponents to be playing a level-(k − 1) consistent

strategy σki−1 and best respond accordingly. We say profile σ is a solution to a game γ
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whenever there exists a combination of levels {ki}i∈I such that ki > 0 for all i ∈ I and σi

is level-ki consistent for all i ∈ I.13

Suppose two risk-neutral parties trade an indivisible object with value c for the seller

and v for the buyer, with both values distributed independently and uniformly between

0 and 1. They trade using as a protocol a 1
2 -double auction: the seller and the buyer

respectively submit an ask a and a bid b for the object, and trade happens if and only if

b ≥ a. In that case, the trading price is x = 0.5(a+ b). The utility from not trading is 0 for

both parties, while the utility from trading is us = x− c and ub = v − x for the seller and

the buyer, respectively.

As in Crawford (2021), we assume that the agents’ anchor is uniformly distributed

over [0, 1] and that both agents are of level k = 1. Then there exists an SCF f that is

implementable but not BIC: the unique level-1 consistent strategies are to bid 2
3v for the

buyer and to ask 2
3c+

1
3 for the seller, and the associated SCF stipulates that trade happens

if and only if 2v ≥ 2c + 1 at a price of 1
6(2v + 2c + 1). As remarked by de Clippel et al.

(2019), a buyer of value v = 0.5 would then have an incentive to imitate a buyer of type

v = 0.75 to gain a positive payoff, violating BIC.

However, the same function is not implementable if the two agents could both be of

level k = 2. de Clippel et al. (2019) highlight that playing 2
3v+

1
9 for v ≥ 1

3 and v otherwise

is a best response for the buyer to the level-1 strategy of the seller. Similarly, playing 2
3c+

2
9

for c ≥ 1
3 and c otherwise is a best reply for the seller to a level-1 buyer. The strategies

form a solution to the mechanism considered, but the mechanism fails to implement f as

the two solutions lead to different outcomes.14

This discrepancy follows because we need all solutions of the mechanism to yield the

13As in de Clippel et al. (2019), each agent’s type describes only her beliefs about the payoff-
relevant state: as levels do not affect preferences, they are not part of the description of an agent’s
type.

14As a matter of fact, it is straightforward to check that two level-2 players would trade for
v = c = 1

4 , while two level-1 players would not trade for those values as 1
2 = 2v < 2c+ 1 = 3

2 .
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same outcome for each type profile t ∈ T for the mechanism to implement an SCF f . The

argument, however, generalizes to any arbitrary mechanism γ = (µ, S). Suppose µ has a

solution σ1 (so that σ1
i is a best reply to α−i for all agents), and suppose such a solution

induces a non-incentive compatible SCF. Then, (σ2
i , σ

1
−i) is a solution of the mechanism

whenever σ2
i is a best reply to σ1

−i, as player i is best responding to level-1 consistent

strategies while all other agents are best responding to their anchors. Moreover, it cannot

be the case that µ(σ1) = µ(σ2). As σ1 induces non-BIC f , there would then exist i ∈ I,

ti, t
′
i ∈ Ti:

∫
T−i

ui(µ(σ
2
i (t

′
i), σ

1
−i(t−i)), t) dpi(t−i|ti) =∫

T−i

ui(µ(σ
1
i (t

′
i), σ

1
−i(t−i)), t) dpi(t−i|ti) >∫

T−i

ui(µ(σ
1
i (ti), σ

1
−i(t−i)), t) dpi(t−i|ti) =∫

T−i

ui(µ(σ
2
i (ti), σ

1
−i(t−i)), t) dpi(t−i|ti)

Therefore, σ2 is not a best reply to σ1 for at least one type ti of player i. It must then be the

case that µ(σ1) ̸= µ(σ2). This violates uniqueness, making it impossible for the mechanism

to implement any non-incentive compatible SCF.15

While the argument above relies on the properties of level-k models (which are often

solved recursively starting from the anchor), a similar result holds for a much larger class

of solution concepts as well. In particular, we prove any solution concept such that agents

correctly predict the outcome of the mechanism makes BIC necessary for implementation.

Equilibrium solution concepts are clearly part of this class, as agents correctly anticipate the

strategies their opponents are using—that is, agents hold rational expectations. This class

is broader, encompassing also solution concepts in which agents possibly hold heterogeneous

and/or incorrect expectations about the strategies of their opponents. For instance, if we

15It would still be possible for the mechanism to implement a social choice set. In fact, de Clippel
et al. (2019) prove BIC is no longer necessary for level-k implementation in this case.
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insist on full implementation of an SCF, the level-k reasoning model of de Clippel et al.

(2019) and ICR (Kunimoto et al., 2023) fall into this class. Section 6.1 discusses how,

for full implementation of functions, the impossibility result of Myerson and Satterthwaite

(1983) generalizes to this broader class of solution concepts, confirming its robustness even

outside the rational expectations paradigm.

4 Results

We prove that BIC is still a necessary condition for implementation of functions if and

only if the solution concept satisfies a novel property we called Weak Solution Consistency

(Section 4.1). This property can be interpreted as requiring that for each type of each

agent, there exists a solution to the mechanism in which she does not want to imitate a

different type. WSC is satisfied by several solution concepts that have been considered in

the literature, with some notable exceptions (Section 5). WSC is not enough, however, to

establish that BIC is necessary for full implementation of sets (Section 4.2), for which we

need a condition stronger than WSC.

4.1 Full Implementation of Functions

There is a tight link between WSC and the necessity of BIC for implementation of functions:

BIC remains a necessary condition whenever the solution concept is WSC for all mechanisms

implementing f (and thus, whenever it is WSC for all mechanisms). Conversely, if f is BIC,

S is WSC for the whole class of implementing mechanisms Γf,S .

Theorem 1. If f is implementable in S and S is WSC for Γf,S , then it is BIC. If f is

BIC and implementable in S, then S is WSC for Γf,S .

As WSC solution concepts allow each agent to pretend to be of a different type, any

implementable SCF must provide agents an incentive not to misreport their type. The
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result then follows from the uniqueness requirement, which entails that the same SCF must

incentivize all agents not to mimic a different type.

The full proof for the result is relegated to Appendix A. It is, however, instructive to

discuss here a sketch of the argument for the “if” part to appreciate how WSC and the

uniqueness requirement of full implementation drive the final result. The key step of the

proof involves noticing that whenever a solution σ of mechanism γ exists such that for type

ti and all t′i ∈ Ti:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

Then, as any f implemented by γ is such that µ(σ) = f by the uniqueness requirement of

full implementability, the inequality above yields:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

WSC ensures that such a solution σ ∈ S exists for all i ∈ I and ti ∈ Ti: then, by the

uniqueness requirement, if follows that all such solutions will yield f as an outcome. This

is enough to establish that f is indeed BIC.

As argued below, the class of WSC solution concepts is rather broad, and it includes

the level-k model of de Clippel et al. (2019), BNE, and ICR (Dekel et al., 2007). For an

example of a WSC solution concept not yet considered in the literature, see the discussion

about ∆-rationalizability in Section 5.2.16

4.1.1 Necessity of SIRBIC

It is also possible to use E and R to prove that the necessity of SIRBIC is a byproduct of

the assumption that all best replies to an agent’s expectations concur to form a solution to

16Although the tools described in this paper can be used to investigate the necessity of BIC for
implementation in other solution concepts as well, such an endeavor falls beyond this paper’s scope.
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the mechanism, rather than to the use of a non-equilibrium solution concept. This is the

case, for example, in de Clippel et al. (2019) and Kunimoto et al. (2023).

Theorem 2. Suppose f is BIC and implementable in S. If R = B, then f is SIRBIC.

That is, if all best replies to a profile of expectations are solutions to the mechanism (as

is the case for the examples discussed in Section 5), SIRBIC obtains for free from BIC and

implementability.

4.2 Full Implementation of Sets

The results in Section 4.1 suggest that the necessity of BIC is robust even if we consider

non-equilibrium solution concepts for the case of full implementation of functions. This

section considers implementation of social choice sets instead. de Clippel et al. (2019) and

Kneeland (2022) prove that implementation of sets is more permissive than implementation

of functions, as incentive compatibility of F is not necessary for implementation. Theorem 3

proves these positive results are due to the relaxation of the uniqueness requirement.

Theorem 3. If F is implementable in WSC S, then for all i ∈ I and ti ∈ Ti, there exists

f i,ti ∈ F that is BIC for i and ti. Conversely, if F is implementable and there exists

f i,ti ∈ F that is BIC for i and ti, then S is WSC for ΓF,S .

This result generalizes the standard incentive compatibility constraint, showing that

only a form of partial incentive compatibility is necessary for implementation of sets. In-

centive constraints can be satisfied through a different function f i,ti for each agent and

type.17 A key implication is that the planner may be able to promise each type of each

agent a different incentive f i,ti , exploiting heterogeneity in expectations across agents and

types. Conversely, BIC requires the same function f to satisfy the incentive constraints

of all players and types, imposing f i,ti = f j,tj for all i, j ∈ I, ti ∈ Ti, and tj ∈ Tj . This

17This point is similar to the one Kneeland (2022) makes about level-k models.
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provides intuition as to why implementation of sets is much more permissive than imple-

mentation of functions: as the planner is not restricted to a unique outcome for all solutions,

she can decouple the incentives provided to each type of each player, possibly allowing for

implementation of sets that do not contain any incentive compatible SCF.

We can also characterize the set of solution concepts that make BIC necessary for im-

plementation when the uniqueness requirement is dropped. As the discussion of Theorem 3

suggests, this class will feature concepts in which beliefs are consistent across players and

types.

Definition 2 (Total Weak Solution Consistency (TWSC)). We say a solution concept S

is TWSC for mechanism γ whenever for all σ ∈ S, i ∈ I, ti, t
′
i ∈ Ti:

∫
T−i

ui(µ(σ(t)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σi(t
′
i), σ−i(t−i)), t) dpi(t−i|ti).

TWSC requires each solution of the mechanism to be incentive compatible, and it is

almost equivalent to BNE. The only difference is that for all i ∈ I, σi(ti) needs to be a better

(rather than best) reply than σi(t
′
i) to profile σ−i. This comes very close to requiring rational

expectations as well, as it entails that all types of all agents have consistent expectations

about the outcome that will prevail in the mechanism.

Theorem 4. If F is implementable in TWSC S, then it is BIC. If F is implementable and

BIC, then S is TWSC for ΓF,S .

Therefore, the necessity of BIC is a more “fragile” result whenever F is not a singleton,

as it stems from very restrictive assumptions about the solution concept. This fragility

arises because a non-singleton F allows different players to believe different outcomes will

prevail in the mechanism. Therefore, it becomes no longer necessary for the same outcome

to simultaneously provides incentives not to misrepresent their private information to each

type and agent.
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That TWSC and WSC are equivalent for all mechanisms yielding the same outcome

for all solutions confirms this intuition. It follows, then, that the BIC restriction on im-

plementable social choice rules in the case of non-rational expectations can be imputed to

the insistence on the uniqueness requirement—that is, on insisting on fully implementing

an SCF.

Theorem 3 provides a weaker result than the one obtained from Kneeland (2022) for

level-k implementation. In this case, we can make use of E in a more explicit way to bridge

the gap between the two by requiring expectations to not depend on each agent’s type.18

Section 5.1 checks that this is indeed the case in Kneeland’s (2022) model.

Theorem 5. If F is implementable in SC S and expectations are type-independent, for all

i ∈ I there exists f i ∈ F that is BIC for i.

In other words, Theorem 5 tells us that if expectations are constant with respect to i’s

type, then the same SCF f i must provide all types ti ∈ Ti with an incentive not to mimic

another type.19 As for the difference between Theorem 1 and Theorem 3, the comparison

of Theorem 3 and Theorem 5 highlights how heterogeneity in expectations leads to a larger

class of implementable social choice rules.

5 Examples

As argued in the previous section, SC does not seem to be a particularly restrictive condition.

It is indeed satisfied by various solution concepts proposed in the literature: BNE (Jackson,

1991), level-k reasoning (de Clippel et al., 2019; Kneeland, 2022), and ICR (Kunimoto et al.,

2023). It is also satisfied by a weaker solution concept than BNE, one that requires agents

18It would be possible to express the results above in terms of a modified WSC condition as well
by substituting the qualifier “for all i ∈ I and ti ∈ Ti” with “for all i ∈ I.” However, stating the
results in terms of expectations seems to be more intuitive.

19For the result to go through, the argument in the proof of Theorem 5 requires only that there
exists one type-independent expectation in E(γ) for each agent.
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to share the same (not necessarily correct) expectations about their opponents.

WSC, in contrast, is not satisfied by Eyster and Rabin’s (2005) Cursed Equilibrium

model and Gagnon-Bartsch et al.’s (2021) model of projection bias. This is because in these

models, the profile of strategies played by each agent as a response to her expectations and

her expectations themselves generally do not form a solution to the mechanism. These novel

examples, together with Crawford’s (2021) level-k model with no level-2 agents, serve to

confirm that WSC does indeed have bite.

5.1 Level-k Reasoning

The discussion in this section builds on the models of de Clippel et al. (2019) and Kneeland

(2022), which assume that any profile of levels ki is possible, as long each level is lower than

an upper bound k̄ ≥ 2—that is, ki ≤ k̄ for all i ∈ I.

Let α−i : Γ → Σ−i be any correspondence assigning a profile of anchors to each mech-

anism γ ∈ Γ. For each agent i ∈ I, let S1
−i(γ|α) denote the set of all level-1 consistent

strategies σ−i : T−i → ∆(S−i). Similarly, we denote the set of best replies to level-(ki − 1)

consistent strategy profiles as the set of level-ki consistent strategies Ski
−i(γ|α).

We can now characterize the set of solutions for each mechanism γ by setting R = B

and E = EK,α, where:

EK,α(γ) = {e ∈ E : ei,ti ∈ {α−i(γ)}∪{∪1≤ki≤k̄S
ki−1
−i (γ|α)}, ei,ti = ei,t′i , for all i ∈ I, ti, t

′
i ∈ Ti}.

That is, the set of all e ∈ E is such that each player i expects the remaining players

to play the anchor (ei ∈ α−i(γ)) or to best respond as players of some level ki − 1 (ei ∈

∪1≤ki≤KSki−1
−i (µ|α)). It is immediately apparent that any strategy profile such that each

player’s strategy is level-ki consistent for ki ≥ 1 is a solution of the mechanism.20

20In this case, expectations are type independent, allowing me to derive a slightly stronger result
for full implementation of SCSs (Theorem 5).
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This solution concept satisfies SC for all γ ∈ Γ. Because k̄ ≥ 2, EK,α(γ) contains at

least one e such that ei ∈ S1
−i(γ|α). Consider, then, that for all i ∈ I and ti ∈ Ti, any

σ ∈ B(e) = R(e). It is clear, then, that (σi, ei) ∈ S(γ) because σi is a level-2 consistent

strategy and ei is a profile of level-1 consistent strategies.

The assumption that k̄ ≥ 2 (de Clippel et al., 2019; Kneeland, 2022) is useful for

excluding pathological cases in which a player expects her opponents just to play their

anchor. This seems to explain why the findings of de Clippel et al. (2019) and Kneeland

(2022) differ from those in Section 4.1 of Crawford (2021), which instead proves it is possible

to implement non-BIC SCFs even when the solution is unique. This possibility result

arises because in that setup Crawford (2021) considers level-1 players only, allowing for the

possibility that SC does not hold.

5.2 Interim Correlated and ∆-Rationalizability

Kunimoto et al. (2023) study implementation using Interim Correlated Rationalizability

(ICR) as a solution concept, finding that SIRBIC is a necessary condition for implementing

SCFs.

Let C = (Ci)i∈I be a correspondence profile such that Ci : Ti → 2Si for all i ∈ I.

Consider now the operator b = (bi)i∈I iteratively eliminating strategies that are never a

best response:

bi(C)[ti] ≡

si ∈ Si :

∃λi ∈ Σ−i such that:

(1) supp(λi(t−i)) ⊆ C−i(t−i);

(2) si ∈ argmaxs′i

∫
T−i

ui(µ(s
′
i, σ−i(t−i)), t) dpi(t−i|ti)


As argued in Kunimoto et al. (2023), by Tarski’s theorem, there exists a largest fixed point

of b, which is denoted as Cγ(T ). The authors then require that, for f to be implementable,

there must exist a mechanism such that (1) the desired outcome obtains for all rationalizable
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strategy profiles and (2) each type ti has at least one rationalizable action.

We can then show that the class of ICR strategy profiles can be characterized by the

following pair (EICR, RICR) :21

EICR(γ) = {e ∈ E : supp(ei,ti(t−i)) ⊆ C
γ(T )
−i (t−i)}

RICR(e) = {σ ∈ Σ : σ ∈ B(e), |supp(σ(t))| = 1 for all t ∈ T}

This follows because SICR(γ) = RICR(EICR) = Cγ(T ) for all γ ∈ Γ. In fact, σ ∈ B(e)

for e ∈ E(γ) implies that the unique profile s in σ’s support is a rationalizable profile of

actions, and thus it implies that σ ∈ Cγ(T ) and S ⊆ Cγ(T ). Conversely, if σ ∈ Cγ(T ) for

all i ∈ I and ti ∈ Ti, then there exists a λi ∈ Σ−i to which σi(ti) is a best reply. Setting

ei,ti = λi, then, is enough to achieve Cγ(T ) ⊆ S.

ICR satisfies SC for a large class of mechanisms γ ∈ Γ—in particular, those in which

Bi(ei,ti) ̸= ∅ for all i ∈ I and ti ∈ Ti. This is the case, for example, if A is finite as

in Kunimoto et al. (2023). Then, for any solution σ ∈ SICR and σ̃i ∈ Bi(σ−i), we have

(σ̃i, σ−i) ∈ SICR(γ) because σ ∈ SICR(γ) entails that σ−i is rationalizable for all agents

j ̸= i and that σ̃i is rationalized by the belief that i’s opponents are playing σ−i.

The same argument applies even if we require, similarly to ∆-rationalizability (Battigalli

and Siniscalchi, 2003), that agents’ beliefs about their opponents’ strategies lie in a pre-

specified set. For each i ∈ I and ti ∈ Ti, let ∆
i map each mechanism Γ to a set of allowed

beliefs ∆i,ti(γ). Let ∆ = (∆i)i∈I . We can then redefine the operator b as follows:

bi(C)[ti] ≡

si ∈ Si :

∃λi ∈ ∆i ⊆ Σ−i such that:

(1) supp(λi(t−i)) ⊆ C−i(t−i);

(2) si ∈ argmaxs′i

∫
T−i

ui(µ(s
′
i, σ−i(t−i)), t) dpi(t−i|ti)


21The requirement that supp(σ(t))| = 1 for all t ∈ T arises because, as in Kunimoto et al. (2023),

we focus on pure strategies.
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Again, as b is a monotone operator, Tarski’s theorem implies that there exists a largest

fixed point, which we again denote as Cγ(T ),∆. The same argument as above then shows

that the class of ∆-rationalizable strategies S∆ can be characterized through the following

pair:

E∆(γ) = {e ∈ E : supp(ei,ti(t−i)) ⊆ C
γ(T ),∆
−i (t−i)}

R∆(e) = {σ ∈ Σ : σ ∈ B(e), |supp(σ(t))| = 1 for all t ∈ T}

∆-rationalizable full implementation has not been considered in the literature, so it is

not yet known whether BIC is necessary for full implementation.22 There is no obvious

relation between the set of ∆-rationalizable profiles and equilibrium profiles either, as the

relation depends on the restrictions imposed by ∆. For a simple example, focus on the

following complete-information game:23

Player C

A B C

A (2, 2) (−2,−2) (−2,−2)

Player R B (−2,−2) (1,−1) (−1, 1)

C (−2,−2) (−1, 1) (1,−1)

This game admits only one pure-strategy equilibrium in which both players play A.24 If

∆ imposes no restriction on players’ beliefs, any pure-strategy profile is ∆-rationalizable;

therefore, any equilibrium is ∆-rationalizable as well. Suppose now we restrict agents’ beliefs

to assign positive probability to B and C only. As A is dominated when the opponent never

plays A, any profile in which A is played is now not ∆-rationalizable, implying that the set

of ∆-rationalizable profiles is disjoint from the set equilibrium profiles.

We can then use Theorem 1 and Theorem 3 to derive a novel result about the necessity

22Artemov et al. (2013) use ∆-rationalizability as a solution concept. Differently from this paper,
they study robust virtual implementation by imposing restrictions on the set of beliefs agents may
have about their opponents’ types.

23We can think of it as a Bayesian game in which each player has only one type.
24We focus on pure equilibria to keep our results comparable with those for Interim Correlated

Rationalizability discussed above.
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of BIC for ∆-rationalizable implementation by proving that S∆ is WSC whenever ∆ does

not rule out the possibility that agents believe that their opponents will play a pure strategy.

That is, for all i ∈ I, ∆i contains all λi whose support is a singleton for all t−i ∈ T−i.
25 Let

us again consider the class of mechanisms such that Bi(ei,ti) ̸= ∅ for all i ∈ I and ti ∈ Ti.

Because for each i ∈ I and ti ∈ Ti there exists a λi ∈ ∆i whose support is a singleton for

all t−i ∈ T−i, let us construct σ
i,ti = (σi, λi), where σi ∈ Bi(λi). As σ

i,ti ∈ S∆, S∆ is WSC;

in fact, σi,ti
i is rationalized by λi ∈ ∆i, and σi,ti

j is rationalized by some belief in ∆j for all

j ̸= i.

5.3 Bayesian Nash Equilibrium and Refinements

The setup proposed in this paper can capture Bayesian Nash equilibrium if we impose the

following:

EBN (γ) = {e ∈ E(γ) : ∃ σ ∈ ×i∈IΣi s.t. ei,ti = σ−i for all i ∈ I, ti ∈ Ti, σ ∈ B((σ−i)i∈I)}

RBN (e) = {σ ∈ B(e) : σ−i = ei for all i ∈ I}

It is clear then that the set of BNEs is equal to RBN (EBN (γ)) = SBN(γ). In fact, if

σ ∈ SBN(γ), then σi ∈ B(σ−i) for all i ∈ I. On the other hand, if σ is a BNE, it is

immediate to notice that (σ−i)i∈I ∈ EBN (γ) and thus σ ∈ RBN (e). Moreover, as long

as EBN (γ) ̸= ∅, RBN (EBN (γ)) ̸= ∅ as well. In fact, RBN just selects, among all profiles

of best responses, the one satisfying rational expectations. SBN also satisfies SC for all

γ ∈ Γ because for all i ∈ I and ti ∈ Ti, the expectation profile e′ = (σ−i)i∈I is such that

(σi, ei,ti) = σ ∈ B(e′). The same argument applies to refinements of BNE as well (as

undominated BNE), because they all satisfy the rational expectations assumption.

25For the result to go through, it is enough that the set of rationalizable strategies for i’s opponents
has a non-empty intersection with ∆i for all i ∈ I.
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5.4 Cursed Equilibrium

This setup can also capture the Cursed Equilibrium solution concept from Eyster and Rabin

(2005). This leads to the following theory of behavior:

ECE(γ) = {e ∈ E(γ) : ∃ σ ∈ ×i∈IΣi s.t. ei,ti = σ−i for all i ∈ I, ti ∈ Ti, σ ∈ B((σ̄−i)i∈I)}

RCE(e) = {σ ∈ B(e) : σ̄−i = ei},

where:

σ̄−i(ti) =

∫
T−i

σ−i(t−i) dpi(t−i|ti).

It is possible to prove that this solution concept is WSC for all mechanisms γ if agents

have private values but not otherwise. Intuitively, the reason is that the payoff distribution

that agents expect to achieve differs from the one the mechanism actually implements. For

example, a fully cursed (χ = 1) agent i expects the payoff from playing the action associated

with type t′i to be
∫
T−i

ui(f(t
′
i, Ī−i), t) dpi(t−i|ti) rather than

∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti),

where I represents the identity function.26

To prove the result for private values, suppose σ ∈ RCE(ECE(γ)). Therefore, we have

that for all ti ∈ Ti and si ∈ ∆(Si):

(1− χ)

∫
T−i

ui((σ(ti), σ−i(ti)), ti) dpi(t−i|ti) + χ

∫
T−i

ui((σ(ti), σ̄−i(ti)), ti) dpi(t−i|ti) ≥

(1− χ)

∫
T−i

ui(si, σ−i(ti)), ti) dpi(t−i|ti) + χ

∫
T−i

ui(si, σ̄−i(ti)), ti) dpi(t−i|ti).

Then, as ui(·) does not depend on t−i, by linearity of expected utility it follows that:

∫
T−i

ui((σ(t), ti) dpi(t−i|ti) ≥
∫
T−i

ui(si, σ−i(t−i), ti) dpi(t−i|ti).

26The difference between these two expressions is immaterial for private-value auctions but not
for common-value ones.
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As σ is a solution, this concludes the proof.

However, the same is not valid for all mechanisms γ if an agent’s payoff depends on the

type of her opponents. This is because the profile (σi, σ̄−i) is typically not a solution to

the mechanism, violating SC. To prove WSC is violated as well for any χ ∈ (0, 1], we can

construct the following two-player game:

Player C
A B

Player R
A tR, tC tR + ζtC , 0
B 0, tC + ζtR 0, 0

Where ti ∈ {−1, 1} for i ∈ {R,C}, each type profile happens with equal probability,

and ζ ∈ (2, 2
1−χ).

27 The only Cursed Equilibrium of this game is for type 1 to play A and

for type −1 to play B. To prove this, consider any solution σ of the game. Then:

σ̄i(ti)[A] =
1

2
σj(1)[A] +

1

2
σj(−1)[A].

The payoff of B is always 0 for either player, while the payoff from playing A is:

ti −
1

2
(1− χ)ζ(σ−i(1)[A]− σ−i(−1)[A]).

Type 1 will play A with probability 1 as long as:

1− 1

2
(1− χ)ζ > 0 ⇐⇒ ζ <

2

1− χ
.

And type ti = −1 will play B with probability 1 whenever:

−1− 1

2
(1− χ)ζ < 0 ⇐⇒ ζ >

−2

1− χ
.

There is therefore a pure Cursed Equilibrium in which both agents play A if their type is

27In the discussion below, the argument focuses on the case of χ < 1. The case of χ = 1 follows
from the same steps as long as ζ > 2.
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ti = 1 and B otherwise. Moreover, this is the unique Cursed Equilibrium of the game, and

it does not satisfy WSC. In fact, for type ti = 1 of player i, ζ > 2 implies that:

1

2
ti +

1

2
(ti − ζ) = 1− 1

2
ζ < 0.

Thus, type ti = 1 would like to mimic type ti = −1 if she was not ignoring the correla-

tion between her opponents’ strategies and types: Cursed Equilibrium then allows for the

implementation of non-BIC SCFs.

5.5 Näıve Bayesian Equilibrium

Gagnon-Bartsch et al. (2021) propose a model of taste projection—that is, the tendency

of agents to believe that their opponents’ valuations of an object are more similar to their

own than they actually are. The associated solution concept, Näıve Bayesian Equilibrium

(NBE), captures the idea that agents play according to the BNE of a perceived game in

which beliefs are distorted by taste projection.

To keep the discussion simple, let agents’ values be private and independent.28 Let

BNE(γ, τ̂(ti)) then denote the set of pure-strategy BNEs of mechanism γ when agents

believe that their opponents’ values are determined according to the random variable τ̂(ti) =

χti + (1 − χ)τ rather than the true random variable τ . We can then define SNBE =

(ENBE , RNBE) as follows:

ENBE(γ) = {e ∈ E(γ) : ei,ti = σ−i for all i ∈ I, ti ∈ Ti, where σ ∈ BNE(γ, ti)}

RNBE(e) = {σ ∈ Σ : (σi, ei) ∈ BNE(γ, ·) for all i ∈ I}

Let us say that (A, T, I) is an economic environment whenever, for all t ∈ T , i, j ∈ I

28More general versions of this model can be accommodated in the framework presented in the
Online Appendix.
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and a ∈ A, there exist b, c ∈ A such that ui(b, t) > ui(a, t) and uj(c, t) > uj(a, t). Say also

(A, T, I) satisfies single crossing whenever ui(a, t) ≥ ui(b, t) and ui(a, t
′) ≥ ui(b, t

′) for all

i ∈ I imply that there exists a c ∈ A such that ui(a, t) ≥ ui(c, t) and ui(c, t) > ui(a, t).

Theorem 6 shows that NBE is generally not WSC.

Theorem 6. Let |I| ≥ 3. If χ = 1 and (A, T, I) satisfies the single-crossing and economic-

environment assumptions, any SCF f can be implemented in NBE via the Maskin mecha-

nism (Maskin, 1999).

For χ = 1, the perceived mechanism is a complete-information game. Then, if (A, I, T )

satisfies the economic-environment and single-crossing assumptions, any SCF f is imple-

mentable via the canonical mechanism in Maskin (1999), as f vacuously satisfies no-veto-

power and Maskin-monotonicity. Moreover, the NBE is unique, as all BNEs of the Maskin

mechanism prescribe the same action for agent i of type ti. Under these restrictions on the

preference domain, all SCFs are implementable whether they are BIC or not. By Theorem 1

this entails that, in general, NBE is not a WSC solution concept.

6 Applications

The results in previous sections allow us to extend the results stemming from the necessity of

BIC for implementation to all WSC solution concepts. We take as examples three classical

results from the mechanism design literature: the impossibility of efficient bilateral trade

(Myerson and Satterthwaite, 1983), the impossibility of full surplus extraction in auctions,

and the Revenue Equivalence Theorem (Myerson, 1981). Our results confirm that the

economic intuition behind these results extends to a wide range of boundedly rational

setups.
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6.1 Myerson-Satterthwaite’s Impossibility Theorem

Myerson and Satterthwaite (1983) show that efficient bilateral trade is impossible in the

presence of private information, unless the planner steps in to cover some of the losses

the agents face. As this result relies on the necessity of BIC for implementation in BNE,

Theorem 1 allows us to extend it to all WSC solution concepts.

As in Myerson and Satterthwaite (1983), we consider a bargaining problem in which

two agents (a buyer B and a seller S) bargain over the sale of an indivisible object that each

agent values at ti, where each ti is distributed according to pi : Ti → [0, 1]. We assume pi

admits a continuous and positive pdf over the interval [ai, bi], with (aS , bS) ∩ (aB, bB) ̸= ∅.

We also assume that tB is independent of tS and that each agent knows her valuation and

how the valuation of the other agent is distributed. The set of alternatives consists of all

pairs (q, x), where q ∈ [0, 1] represents the probability that trade will happen and x indicates

the amount transferred from the buyer to the seller. Bernoulli utilities ui : A× Ti → R are

additively separable in money and the value of the object, and agents are risk neutral.

Under these assumptions, Myerson and Satterthwaite (1983) prove that an implementing

mechanism that assigns an object to the agent who values it the most is unable to ensure

voluntary participation by both agents. Formally, an SCF is ex-post efficient if it allocates

the object with probability 1 to the agent who values it the most—that is, q(t) = 1 whenever

tB > tS , and q(t) = 0 whenever tB < tS . Moreover, we say f is individually rational

whenever ui(f(t), t) = q(t)ti − x(t) ≥ 0 for all i ∈ I and t ∈ T .

Myerson and Satterthwaite’s (1983) proof relies on showing there exists no SCF f that

is simultaneously individually rational, ex post efficient, and BIC. The following corollary

then follows from Theorem 1:

Corollary 1. If f is individually rational and ex-post efficient, it is not fully implementable

in any WSC S.

Myerson and Satterthwaite (1983) highlight that it is impossible to find an ex-post
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efficient and individually rational SCF that is also incentive compatible for all types and

agents at the same time. This finding extends the negative results de Clippel et al. (2019)

and Crawford (2021) obtain for full implementation of SCFs in level-k reasoning.

Kneeland (2022) shows instead it is possible to fully implement an efficient and individ-

ually rational social choice set. Each agent can believe a different solution of the mechanism

will obtain when F is not a singleton, allowing the planner to decouple the incentives she

provides. That is, F must contain one SCF that is incentive compatible for each agent and

type, but needs not contain an SCF that is incentive compatible for all types of all agents

at the same time.

6.2 Impossibility of Full Surplus Extraction

If S is WSC, the planner cannot implement an auction extracting all expected surplus from

agents unless she excludes lower-ranked types from winning the object.

Suppose the planner is tasked with designing a mechanism to allocate a single unit of

an indivisible object in exchange for the payment of a fee. Let the set of alternatives be

defined as follows:

A = {(q, x) ∈ [0, 1]I × RI :
∑
i∈I

qi ≤ 1}

That is, f(t) assigns to each agent some probability of winning the object and a (non-

contingent) monetary transfer. For a given f , denote as qfi (t) the probability that agent

i receives the object and denote as xfi (t) the associated transfer to the planner from the

agent getting the object. Assume, moreover, that T ⊆ RI and types are determined by a

commonly known joint distribution p : T → (0, 1). The value of the object to agent i is

determined according to a function vi that is strictly increasing in i’s type, and Bernoulli

utilities take the additively separable form ui(t) = vi(t)− xi.

We then say a SCS F is fully extractive whenever xfi (t) = qfi (t)vi(t) for all t ∈ T and
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f ∈ F . Moreover, we say F is inclusive whenever, for all f ∈ F , i ∈ I, there exists t′i ∈ Ti

and t ∈ T such that t′i > ti and qfi (t) > 0. In other words, inclusivity requires that f does

not prevent all types ti that are ranked lower than t′i from getting the object with positive

probability for all type profiles t−i of other agents. This is the case, for example, for ex-post

efficient allocation rules.

We can then prove there exists a tradeoff between inclusivity and total surplus extrac-

tion.

Corollary 2. If F is fully extractive and inclusive, then it is not implementable in any

WSC S.

The result follows because inclusivity and complete extraction of surplus entail each type

has an incentive to pretend the object is worth less to her than it actually is. This creates

a tension with implementability in a WSC solution concept, which implies instead there

exists at least one SCF in F providing each agent with the incentive not to misrepresent

her type. This should be contrasted with the result in the previous example, which follows

instead from the fact that the same SCF has to be simultaneously incentive compatible for

all types of all agents as in the application above. The impossibility faced in this application

is therefore harder to escape than the in the application in Section 6.1.

6.3 A Revenue Equivalence Theorem

Our results also allow us to extend Myerson’s (1981) fundamental result about revenue

equivalence of different auction formats to all SCFs that are fully implementable in a WSC

solution concept.

As in Myerson (1981), let us assume that agents’ values are drawn from set [ai, bi] ⊆ R+
0

according to some commonly known cdf p, that agents are risk neutral, that their utility

is additively separable in money and the value of the object, and that vi : Ti → R+ is
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non-negative, increasing, and differentiable in ti for all i ∈ I (this is the case, for example,

if vi(ti) = ti).

Let q̄fi (ti) and x̄fi (ti) denote respectively the average probability of winning and the

transfer for an agent of type ti. An SCF f = (q, x) is differentiable if both q̄i and x̄i are

differentiable in ti for all i ∈ I almost everywhere, and two SCFs f and f̃ are assignment-

equivalent if qf = qf̃ almost everywhere. Notice that f satisfies both conditions whenever it

is ex-post efficient and agents’ values are independently and identically distributed according

to a cdf p, as in that case q̄(ti) = pn−1(ti).

Corollary 3. If differentiable and assignment-equivalent SCFs f and f̃ are fully imple-

mentable in WSC S, then x̄fi (ti)− x̄fi (ai) = x̄f̃i (ti)− x̄f̃i (ai) for all i ∈ I.

Corollary 3 establishes a generalized version of the standard Revenue Equivalence The-

orem of Myerson (1981), stating that the revenue of a given SCF f is determined by its

allocation probability q up to an additive constant x̄f (ai). If we standardize the average

payment of type ai to 0, we obtain the familiar result that any two rules f and f̃ that are

fully implementable in SC S (and their associated implementing mechanisms—for example,

auctions) will yield the same ex-ante revenue to the planner unless they differ in the prob-

ability with which each type gets allocated the object. This fact entails, for example, that

all ex-post efficient SCFs must yield the same revenue to the planner when p is atomless.
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Appendix A Proofs

Proof of Theorem 1. Suppose f is implementable in S via mechanism γ = (µ, S), and

suppose S is WSC for γ. Then S(γ) ̸= ∅ and there exists σ ∈ S(γ) such that:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

As σ ∈ S(γ), implementability of f yields µ(σ) = f . Therefore, for i ∈ I and ti, t
′
i ∈ Ti:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

As our choice of i, ti, and t′i was arbitrary, this is enough to establish that f is BIC.

Conversely, suppose f is BIC and implementable in S via mechanism γ = (µ, S). Then,

for all t′i ∈ Ti and i ∈ I:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, ti), t) dpi(t−i|ti).

By implementability, there exists σ ∈ S(γ) such that µ(σ) = f and thus:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

This concludes the proof.

Proof of Theorem 2. To prove we can strengthen the result of Theorem 1 to SIRBIC, we

proceed by contradiction and suppose that, indeed, the incentive constraint in the proof

of Theorem 1 holds with equality. Define τ : T → Σ as agreeing with σ except that

τ(t) = σ(t′i, t−i) for all t−i ∈ T−i. As σ is a solution to the mechanism, there exist e such

that σ ∈ B(e). As τ yields the same expected utility as σ conditional on expectations

e, σ ∈ B(e) implies τ ∈ B(e). Then by the definition of implementation above, for all
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t−i ∈ T−i:

f(ti, t−i) = µ(τ(t)) = µ(σ(t′i, t−i)) = f(t′i, t−i).

This concludes the proof.

Proof of Theorem 3. Suppose F is implementable in WSC S via mechanism γ = (µ, S) with

S(γ) ̸= ∅. Then for each i ∈ I and ti ∈ Ti, there exists σ ∈ S(γ) such that for all t′i ∈ Ti:

∫
T−i

ui(µ(σ(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σ(t
′
i, t−i), t) dpi(t−i|ti).

As σ ∈ S(γ), implementability of F yields µ(σ) = f for some f ∈ F . Therefore, for all

t′i ∈ Ti: ∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

This is enough to prove f is BIC for agent i and type ti.

As for the converse, suppose F is implementable in S via mechanism γ and suppose that

for all i ∈ I and ti ∈ Ti there exists an f ∈ F that is BIC for agent i and type ti. Then for

each such f , i, and ti there exists a solution σ such that f = µ(σ). A simple substitution

in the BIC inequality then yields WSC holds.

Proof of Theorem 4. If F is implementable in S, then any f ∈ F is such that f = µ(σ)

for σ ∈ S. As S is TWSC, it is immediate that f is BIC from the definition of TWSC

by substituting f = µ(σ). Conversely, suppose F is implementable in S. As any σ ∈ S is

such that µ(σ) ∈ F , TWSC follows immediately from the fact that all functions f ∈ F are

BIC.

Proof of Theorem 5. Suppose F is implementable in SC S, and suppose E is type-independent.

By SC, for all i ∈ I there exists e ∈ E(γ) and σ ∈ R(e) such that (σi, ei) ∈ S(γ). Then for
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all t′i ∈ Ti, by σ ∈ R(e) ⊆ B(e) it is true that:

∫
T−i

ui(µ(σi(ti), ei(t−i)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(σi(t
′
i), ei(t−i)), t) dpi(t−i|ti).

For each i ∈ I, let f = µ ◦ (σi, ei). By SC, µ ◦ (σi, ei) ∈ F , so f ∈ F . Moreover:

∫
T−i

ui(f(t), t) dpi(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dpi(t−i|ti).

This entails that f is BIC for all types of agent i. This concludes the proof.

Proof of Theorem 6. Let us first derive the set of BNEs of the Maskin mechanism (µ, S)

associated with f under the perceived distribution of types. Let S = ×i∈ISi, with Si =

(T,A,N). The outcome function µ is as follows:

• Rule 1: If si = (t, f(t), 0) for all i ∈ I, then µ(s) = f(t).

• Rule 2: If sj = (t′, a,N) and si = (t, f(t), 0) for all i ̸= j, then µ(s) = a if ui(f(t), t) ≥

a and µ(s) = f(t) otherwise.

• Rule 3: µ(s) = a otherwise, where a is the outcome reported by the agent with the

lowest index among those that reported the highest integer.

As (A, T, I) satisfies the economic-environment assumption, the same argument as in Maskin

(1999) implies that σ(t) does not fall under Rule 2 or Rule 3 for all t ∈ T . If it were otherwise,

at least one agent could report a higher integer than her opponents and achieve a ∈ A such

that ui(a, t) > ui(µ(σ(t)), t). Therefore, for all states t ∈ T , σ(t) falls under Rule 1.

As σ(t) falls under Rule 1 for all t ∈ T , there exists a t′ ∈ T such that σi(ti) = (t′, f(t′), 0)

for all ti ∈ Ti and i ∈ I. For the sake of contradiction, suppose now that t′ ̸= t. As σ is

an equilibrium, it must hold for all i ∈ I that ui(f(t
′), t) ≥ ui(a, t) for all a ∈ A such

that ui(f(t
′), t′) ≥ ui(a, t

′), as otherwise at least one agent i could play s′i = (t′, a, 0) and

obtain ui(a, t) > ui(f(t
′), t). Notice now that, by single crossing, for all i ∈ I there exists
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a z ∈ A such that ui(f(t
′), t′) ≥ ui(z, t

′) and ui(z, t) > ui(f(t
′), t). This entails it would

be profitable for type i to deviate to s′i = (t, z, 0), contradicting the premise that σ is an

equilibrium strategy. Therefore, it must be σ(t) = (t, f(t), 0) for all i ∈ I and t ∈ T .

It remains to be shown that no type ti of each i ∈ I has a profitable deviation from

σ(t). As i can induce a only if ui(µ(σ(t)), t) ≥ ui(a, t), this concludes the proof.

Proof of Corollary 2. We now show that supposing F is implementable in WSC S leads

to a contradiction. Consider any agent i ∈ I. By inclusivity, there exist types ti, t
′
i ∈ Ti

such that qfi (t
′
i, t−i) > 0 and ti > t′i. By WSC and Theorem 3, we then know that if F is

implementable in S, for all i ∈ I and ti ∈ Ti, then there exists an f ∈ F that is BIC for i

and ti. Therefore, for all i ∈ I, ti ∈ Ti and t′i < ti, full surplus extraction implies:

0 =

∫
T−i

(qfi (t)vi(t)− qfi (t)vi(t)) dpi(t−i|ti) ≥
∫
T−i

qfi (t
′
i, t−i)(vi(t)− vi(t

′
i, t−i)) dpi(t−i|ti)

As vi is strictly increasing in i’s type and F is inclusive:

∫
T−i

qfi (t
′
i, t−i)(vi(t)− vi(t

′
i, t−i)) dpi(t−i|ti) > 0.

This inequality contradicts the fact that f is BIC for i and ti, concluding the proof.

Proof of Corollary 3. As f is implementable in S WSC, it is BIC. So t∗i = ti must maximize

the payoff function q̄f (t∗i )vi(ti)− x̄fi (t
∗
i ). A necessary condition for a maximum is that the

first derivative with respect to vi of this function is null at ti—that is, ∂x̄f (ti)
∂ti

= ∂q̄f (ti)
∂ti

vi(ti).

Then:

x̄(ti)− x̄(ai) =

∫ ti

ai

vi(t
′
i)
∂q̄f (t′i)

∂ti
dt′i.

Analogous reasoning for f̃ and assignment-equivalence yield x̄f (ti)−x̄f (ai) = x̄f̃ (ti)−x̄f̃ (ai),

concluding the proof.
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Appendix B Extensions of the Model

Non-standard Choice Correspondences

This section relaxes the assumption that agents best respond to their expectations, general-

izing the results in the main body of the paper beyond the domain of von Neumann–Morgenstern

preferences.

We can interpret the revelation principle as saying that some lotteries in the choice sets

induced by an indirect implementing mechanism (but not in the direct one) can be safely

neglected, as they are not going to be relevant. Formally, this requires that restricting

the choice set of an agent of type ti to the set of lotteries that would be a solution to

the mechanism for some type t′i ∈ Ti does not affect her choice. This will require us to

impose some form of Contraction Consistency, or Independence of Irrelevant Alternatives

(see, for example, Property α of Sen (1971)). In the argument below, we only maintain the

assumption that agents are consequentialist—that is, that their choices depend only on the

set of alternatives they choose from.29

As in Saran (2011) and Barlo and Dalkıran (2023), we model individual strategic de-

cisions, for all i ∈ I, as choices over a set of interim Anscombe-Aumann acts (IAA acts)

xi : T−i → ∆(A). Denote as X the set of all IAA acts.

We can then define a choice correspondence Ci,ti as mapping each non-empty subset

X of X to a subset of ∆(X). That is, for all X ⊆ X , Ci,ti(X) ⊆ ∆(X). As in Barlo

and Dalkıran (2023) and unlike in Saran (2011), we do not assume Ci,ti is generated by a

menu-dependent preference order.

Notice that for any given si ∈ Si and σ−i ∈ Σ−i, the function µ(si, σ−i) is an IAA act.

We can then denote the set of acts agent i of type ti chooses from given her expectations

29This rules out, for example, preferences for truth-telling.
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as follows:

Oi(σ−i) = {xi ∈ X : xi = µ(si, σ−i), si ∈ Si}

As in previous sections, we say si ∈ ∆(Si) is a reply to σ−i for type ti whenever si ∈

Ri,ti(σ−i) ⊆ µ−1(Ci,ti(Oi(σ−i))). That is, the outcome of the strategies chosen as a response

to σ−i is a subset of what agent i of type ti would choose from the set of acts Oi(σ−i). Notice

that µ−1(Ci,ti(Oi(σ−i))) coincides with the set Bi,ti considered in the main text in the case

in which the agent maximizes expected utility given σ−i. We moreover say σ is a solution

to a mechanism γ whenever there exists e ∈ E(γ) such that σ ∈ R(e).

Let Of,ti
i denote the set of IAA acts that agent i can generate in the direct mechanism

(f, T ) when her opponents truthfully report their type:

Of,ti
i =

{
xi ∈ X : xi ∈ f(t′i, I−i) where t′i ∈ Ti

}
Incentive Compatibility can then be generalized as in Saran (2011):

Definition 3 (Incentive Compatibility (IC)). Let Ci,ti be given. We say f satisfies IC for

type ti ∈ Ti and i ∈ I whenever f(ti, ·) ∈ Ci,ti(O
f,ti
i ). We say f is IC whenever it is IC for

all ti ∈ Ti and i ∈ I.

In other words, we require agents to choose the act associated with their type ti when

they expect their opponents to choose the acts associated with their types as well. In the case

of BIC, this coincides with the set of acts maximizing expected utility in the choice set. To

derive our main result for this section, we redefine WSC in terms of choice correspondences

rather than utility maximization.

Definition 4 (Weak Choice Consistency (WCC)). We say a solution concept S satisfies

WCC for a class of mechanisms Γ̃ ⊆ Γ whenever for all γ ∈ Γ̃, i ∈ I, ti ∈ Ti there exists
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σ ∈ S(γ) such that µ(σi(ti), σ−i) ∈ Ci,ti(Xi(σ−i)), where:

Xi(σ−i) = {xi ∈ X : xi = µ(σi(t
′
i), σ−i) with t′i ∈ Ti}.

We say S satisfies WCC if it satisfies WCC for all γ ∈ Γ such that S(γ) ̸= ∅.

It is immediately possible to extend Theorem 3 and, when F is a singleton, Theorem 1.

Theorem 7. If F is implementable in WCC S, then for all i ∈ I and ti ∈ Ti there exists

an f i,ti ∈ F that is IC for i and ti. Conversely, if F is implementable and there exists an

f i,ti ∈ F that is IC for i and ti, then S is WCC for ΓF,S .

Notice that both WSC and WCC implicitly assume a mild form of contraction con-

sistency between choices in Oi(σ−i) and in Xi(σ−i). In fact, if σ ∈ S(γ) is such that

µ(σi(ti), σ−i) ∈ Ci,ti(Oi(σ−i)) and Xi(σ−i) ⊆ Oi(σ−i), WCC entails that µ(σi(ti), σ−i) ∈

Ci,ti(Xi(σ−i)).

This implicit assumption means it is not as easy to provide a sufficient condition for

WCC as it was for WSC. Let us parallel the definition of SC and say S is Choice Consistent

(CC) for mechanism γ whenever there exist e, e′ ∈ E(γ) and σ ∈ R(e) such that (σi, ei,ti) ∈

R(e′). While this entails µ(σi(ti), ei,ti) ∈ Ci,ti(Oi(ei,ti)), this is not enough to establish

WCC, as it does not preclude the possibility that µ(σi(ti), ei,ti) ̸∈ Ci,ti(Xi(ei,ti)). Without

any form of contraction consistency, CC just implies that for all i ∈ I and ti ∈ Ti there

exists an f ∈ F and O ⊆ X such that Of,ti
i ⊆ O and f(ti, ·) ∈ Ci,ti(O). Using Barlo and

Dalkıran’s (2023) terminology, we can say f is quasi-incentive compatible (QIC) for agent i

of type ti.

Chernoff (1954) provides an example of a class of choice correspondences ruling out such

a possibility without implying maximization of rational preferences (Sen, 1971). We say a

choice correspondence Ci,ti satisfies Independence of Irrelevant Alternatives (IIA) whenever
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for all X,Y ⊆ X :

Ci,ti(X) ⊆ Y ⊆ X =⇒ Ci,ti(X) ⊆ Ci,ti(Y ).

It is easy to see that IIA entails that if S(γ) is CC, it is WCC as µ(σi(ti), ei,ti) ∈ Ci,ti(Oi(ei,ti))

and:

Ci,ti(Oi(ei,ti)) ⊆ Xi(ei,ti) ⊆ Oi(ei,ti) =⇒ Ci,ti(Oi(ei,ti)) ⊆ Ci,ti(O
f,ti
i ).

It is immediately possible to derive the following by the same argument as in the main text.

Corollary 4. If F is implementable in CC S, then there exists an f i,ti ∈ F that is QIC for

type ti and agent i. If, moreover, Ci,ti satisfies IIA, f i,ti is IC for type ti and agent i.

Even if non-equilibrium models with non-rational choice correspondences have not been

considered in the literature, these results allow us to extend the findings of de Clippel

et al. (2019) and Kunimoto et al. (2023) about level-k and rationalizable implementation

to all consequentialist choice correspondences.30 To this end, it is enough to tweak the

definitions of the solution concepts in the main text by replacing the assumption R ⊆ B

with R ⊆ µ−1(Ci,ti(Oi(σ−i))). In particular, we can say IC is necessary for implementation

in these solution concepts whenever C is IIA.

A limitation of this analysis is in the assumption that agents’ choices depend only

on the menu of acts they choose from. This assumption rules out, for instance, Quantal

Response Equilibrium(McKelvey and Palfrey, 1995) and Sampling Equilibrium (Osborne

and Rubinstein, 1998)). In these models, agents’ choices depend not only on the menu of

available acts but on the number of times an act appears in the menu. We can accommodate

these models by relaxing the assumption that, for all i and ti, Ci,ti ’s domain is the set of all

non-empty sets X ⊆ A. Let us assume instead that Ci,ti ’s domain is the set of all non-empty

bags X with support in A.31 We can get the same result as above (with slightly heavier

30Barlo and Dalkıran (2023) already extend BNE to non-rational choice correspondences with
their Behavioral Interim Equilibrium (BIE) solution concept.

31A bag, or multiset, is a generalization of the concept of set that allows more than one instance
of each element. Its support is the set of elements that appear at least once.
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notation) by adjusting the definitions of IC, QIC, WCC, CC, and IIA accordingly. In this

case, both Sampling Equilibrium and Quantal Response Equilibrium can be considered as

special cases of Behavioral Interim Equilibrium (Barlo and Dalkıran, 2023).

Models as Fairness Equilibrium (Rabin, 1993) are ruled out by our formulation too,

as agents’ choices may depend on the menu of acts their opponents are choosing from.

Again, redefining the domain of the choice correspondence to be the set of all collections of

opportunity sets (one for each i ∈ I) yields a special case of Behavioral Interim Equilibrium.

Epistemic Foundations

To better appreciate how restrictive the conditions for the necessity of BIC are, this section

provides an epistemic justification for (Weak) Solution Consistency. The bulk of the argu-

ment is based on the one Dekel et al. (2007) propose for characterizing ICR. SC obtains

whenever each type of each agent is rational, knows the type space, and knows she could

successfully mimic other types. This makes the overall requirements for SC rather weak

and the related class of solution concepts rather large.

Let γ be fixed, T be finite, and let Pi(t
′
i) = {t ∈ T : pi(t−i|t′i) > 0}. Denote as S(γ, t)

the set of profiles s such that there exists σ ∈ S(γ) such that σ(t) = s. For the purpose

of this section, we assume Σ = ×i∈IΣi. While this rules out some solution concepts, it

still captures most of the solution concepts discussed in the main text, and it makes the

exposition in the proof significantly simpler.

Let Hi be a finite set of epistemic types for player i, and let H = ×i∈IHi.
32 An epistemic

model specifies the following:

• functions ϕi : Hi → ∆(H−i), mapping i’s epistemic type to a belief over others’

epistemic types

32Finiteness of S, T , and H is not necessary for the argument, but it simplifies the exposition by
avoiding the use of measure-theoretic notation.
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• i’s epistemic strategy ηi : Hi → ∆(Si), assigning a distribution over actions to each

epistemic type

• i’s standard type τi : Hi → Ti

An epistemic model is then a tuple (Hi, ϕi, ηi, τi)i∈I with state space H. For a given ϕi,

denote the joint distribution over opponents’ actions and standard types as follows:

λi(hi)[s−i, t−i] =

∫
H−i

η−i(h
′
−i)[s−i]1{τ−i(h′

−i)=t−i)}(h
′
−i) dϕi(hi)[h

′
−i]

For all s−i ∈ ∆(S−i), let λi(hi, t−i)[s−i] = λi(hi)[s−i, t−i] denote the probability profile s−i

is played conditional on type profile t−i. We then define the event in which i’s beliefs over

her opponents’ standard types are consistent with ϕi as follows:

Wi = {h ∈ H : λi(hi)[S−i, τ−i(h−i)] = pi(τ−i(h−i)|τi(hi))}

Notice that h ∈ Wi implies λi(hi, ·) : T−i → ∆−i(S−i), so that λi(hi, ·) ∈ Σ−i is a properly

defined expectation. Let RATi be the set of states such that, conditional on beliefs ϕ(hi),

playing the mixed action associated with one’s own epistemic type hi yields higher expected

utility than playing the action associated with any other epistemic type h′i:

RATi =

{
h ∈ H : ηi(hi) ∈ arg max

h′
i∈Hi

∫
H−i

ui(µ(η(h
′
i, h−i))) dϕi(hi)[h−i]

}

We now define two more events. The first event can be interpreted as the set of epistemic

states such that i playing the action associated with her epistemic type is a solution to the

mechanism if her opponents do the same:

TTi = {h ∈ H : (ηi(hi), λi(hi, τ−i(h−i))) ∩ S(γ, τ(h)) ̸= ∅}

The second event can be interpreted as the set of epistemic states h such that i playing
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the action associated with an epistemic type different from her own is a solution to the

mechanism when her opponents play the action associated with their epistemic type:

PMi = {h ∈ H : (ηi(τ
−1
i (t′i)), λi(hi, τ−i(h−i))) ∩ S(γ, (t′i, τ−i(h−i)) ̸= ∅, t′i ̸= τi(hi)}

This drives the necessity of (partial) BIC for full implementation: if type ti can get away

with mimicking any other type t′i, it becomes necessary to provide her with incentives not to

do so by choosing a BIC SCF f . Formally, for any t′i ∈ Ti, ηi(τ
−1
i (t′i)) represents the set of

all actions played by epistemic types with standard type t′i. So (ηi(τ
−1
i (t′i)), λi(hi, τ−i(h−i))

corresponds to all distributions over actions that i can induce by mimicking some type t′i ̸=

τi(hi), conditional on her expectations about the actions of her opponents. The requirement

that at least one profile in (ηi(τ
−1
i (t′i)), λi(hi, τ−i(h−i)) must belong to S(t′i, τ−i(h−i) can be

interpreted by considering that, in order to successfully mimic a different type, ti must also

make the planner think that the profile of actions the planner observes comes from type

profile (t′i, τ−i(h−i)) rather than (ti, τ−i(h−i)).

Finally, we denote the intersection of the last two events as follows:

SOLi = TTi ∩ PMi

This leads to a second possible interpretation of the two events above: as in Zambrano

(2008), we can take them as meaning that the action ηi prescribes for i, together with her

expectations, will form a solution to the game. Zambrano (2008) uses mutual knowledge

of this event to characterize the set of correlated rationalizable action profiles. Notice that

the characterization in Zambrano (2008), unlike others, relies only on mutual rather than

common knowledge.

We can now prove that WSC is almost characterized by the existence of an epistemic

type for each type ti ∈ Ti that is rational, that knows the standard type space and that
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that mimicking is possible.33

Theorem 8. The two following statements are equivalent:

1. There exists an epistemic model such that for all i ∈ I and ti ∈ Ti there exists

h∗ ∈ RATi ∩Ki(Wi ∩ SOLi) with τi(h
∗
i ) = ti.

2. For all i ∈ I and ti ∈ Ti there exists σi,ti ∈ Σ such that σi,ti(t̃) ∈ S(γ, t) for all

t̃ ∈ Pi(ti) and for all t′i ∈ Ti:

∫
T−i

ui(µ(σ
i,ti(t))) dpi(t−i|ti) ≥

∫
T−i

ui(µ(σ
i,ti(t′i, t−i))) dpi(t−i|ti)

.

We can apply a similar argument to SC to appreciate how different it is from WSC.

The main difference arises because utility maximization does not characterize the set of

responses anymore and because such a set may depend on the full profile of expectations

e. For any profile σ̃−i ∈ Σ−i, let Ri,ti(σ̃−i) denote the set of profiles σ that are a response

to an expectation profile e consistent with type ti of agent i who expects her opponents to

play σ̃−i. Formally:

Ri,ti(σ̃−i) = {si ∈ ∆(Si) : si = σ(t) for σ ∈ R(e) s.t. ei,ti = σ̃−i}.

We can then define:

RAT ∗
i = {h ∈ H : ηi(hi) ∈ Ri,τi(hi)(λi(hi, ·))}.

We can finally characterize SC as follows.

Theorem 9. The following two statements are equivalent:

33The property discussed in this section is weaker than WSC, as the fact that for all t ∈ Pi(ti) there
exists σ̃(t) such that σ̃(t) = σ(t) does not generally imply σi,ti ∈ S(γ). Such a gap is immaterial for
the results of Section 4, but it would require the use of heavier notation.
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1. There exists an epistemic model such that for all i ∈ I and ti ∈ Ti there exists

h∗ ∈ RAT ∗
i ∩Ki(Wi ∩ SOLi) with τi(h

∗
i ) = ti.

2. For all i ∈ I and ti ∈ Ti there exists e ∈ E(γ) and σ ∈ Σ such that σi(ti) ∈ Ri,ti(eti)

and (σi, ei,ti)(t̃) ∈ S(γ, t̃) for all t̃ ∈ Pi(ti).

The main difference between the two conditions does not lie in what agents know but

rather in the assumptions made about the way they respond to their expectations. This

finding highlights the central role played by knowledge of SOLi in determining whether

a solution concept is WSC or SC. Cursed Equilibrium in Section 5 is a case in point. In

that example, even if in all solutions each type of each agent plays a pure strategy, σ̄−i

assigns equal probability to both actions. Thus (σi(ti), σ̄−i(t−i)) fails to be a solution of the

mechanism for any type profile t.

Proofs for Appendix B

Proof of Theorem 7. Suppose F is implementable in WCC S via mechanism γ = (µ, S) with

S(γ) ̸= ∅. Then for each i ∈ I and ti ∈ Ti there exists σ ∈ S(γ) such that µ(σi(ti), σ−i) ∈

Ci,ti(Xi(σ−i)), where:

Xi(σ−i) = {xi ∈ X : xi = µ(σi(t
′
i), σ−i) with t′i ∈ Ti}.

As σ ∈ S(γ), implementability of F yields µ(σ) = f for some f ∈ F . Then:

Xi(σ−i) = {xi ∈ X : xi = µ(σi(t
′
i), σ−i) = f(t′i, ·), t′i ∈ Ti} = Of,ti

i .

Then f(ti, ·) = µ(σi(ti), σ−i) ∈ Ci,ti(Xi(σ−i)) = Ci,ti(O
f,ti
i ), which is enough to prove f ∈ F

is BIC for agent i and type ti.

As for the converse, suppose F is implementable in S via mechanism γ and suppose
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that for all i ∈ I and ti ∈ Ti there exists an f ∈ F that is IC for agent i and type ti. As f

is IC for i and ti, f(ti, ·) ∈ Of,ti
i . Moreover, as F is implementable, there exists a solution

σ ∈ S(γ) such that f = µ(σ). Then:

Of,ti
i = {xi ∈ X : xi = f(t′i, ·) = µ(σi(t

′
i), σ−i) with t′i ∈ Ti} = Xi(σ−i).

As our initial choice of i and ti was arbitrary, this concludes the proof.

Proof of Theorem 8. 1 =⇒ 2 : Let h∗ ∈ RATi ∩Ki(Wi ∩ SOLi). We invoke the following

Lemma, which is proven separately.

Lemma 1. If h∗ ∈ Ki(Wi ∩ SOLi), there exists zi : T → Hi such that τi(zi(t)) = ti for all

ti ∈ Ti and (ηi(zi(t)), λi(h
∗
i , t−i)) ∈ S(γ, t) for all t ∈ Pi(τi(h

∗
i )).

Set σ(t) = (ηi(zi(t)), λi(h
∗
i , t−i)) for all t ∈ T . Then h∗ ∈ RATi yields that for all

h′i ∈ Hi:

∫
H−i

ui(µ(η(h
∗
i , h−i)) dϕi(h

∗
i )[h−i] ≥

∫
H−i

ui(µ(η(h
′
i, h−i))) dϕi(h

∗
i )[h−i].

This entails that for all t′i ∈ Ti:

∫
H−i

ui(µ(η(h
∗
i , h−i)) dϕi(h

∗
i )[h−i] ≥

∫
H−i

ui(µ(η(zi(t
′
i, t−i), h−i))) dϕi(h

∗
i )[h−i].

By Fubini-Tonelli and our choice of σ we can rewrite the inequality above as:

∫
T−i

ui(µ(σ(τi(h
∗
i ), t−i)), t) dpi(t−i|ti) ≥

∫
T−i

ui(µ(σ(t
′
i, t−i)), t) dpi(t−i|ti).

This concludes the proof.

2 =⇒ 1: For all i ∈ I and ti ∈ Ti, letHj consist of all pairs (sj , tj) such that sj = σi,ti
j .34

34As T is finite, H is finite as well.
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Let ηj(hj) = ηj(sj , tj) = sj and τj = τj(sj , tj) = tj . For all j ∈ I and hj ∈ Hj , let:

ϕj(hj)[h−j ] = ϕj(sj , tj)[(s−j , t−j)] = σ
j,tj
−j (t−j)[s−j ]pj(t−j |tj).

We now show that this epistemic model is such that for all i ∈ I and ti ∈ Ti there exists

h∗ ∈ RATi ∩Ki(Wi ∩ SOLi) with τi(h
∗
i ) = ti.

Fix now any i ∈ I and ti ∈ Ti, and consider any h∗ such that h∗i = (σi,ti
i (ti), ti). By our

choice of τ , we can see that τi(h
∗
i ) = ti.

We first show h∗ ∈ Ki(Wi). As σi,ti
−i (t−i)[S−i] = 1, for all t−i ∈ T−i we have the

following:

∫
H−i

1{τ−i(h−i)=t−i}(h−i) dϕi(hi)[h−i] = ϕi(si, ti)[(S−i, t−i)] = pi(t−i|ti)

Moreover, h∗ ∈ RATi. Notice first that for all h′i ∈ Hi, there exists a t′i ∈ Ti such that

ηi(h
′
i) = σi,ti

i (t′i) by our definition of Hi. By assumption:

∫
T−i

ui(µ(σ
i,ti(t)), t) dpi(t−i|ti) ≥

∫
T−i

ui(µ(σ
i,ti(t′i, t−i), t) dpi(t−i|ti).

We can use Fubini-Tonelli to rewrite the inequality above as follows:

∫
H−i

ui(µ(η(h
∗
i , h−i)) dϕi(h

∗
i )[h−i] ≥

∫
H−i

ui(µ(η(h
′
i, h−i)) dϕi(h

∗
i )[h−i]

This is enough to prove h∗ ∈ RATi.

Suppose now for the sake of contradiction that ϕi(h
∗
i )[SOLi] < 1, so that h∗ ̸∈ Ki(SOLi).

Then there exists an epistemic state h−i with ϕi(h
∗
i )[h−i] > 0 such that either:

(ηi(h
∗
i ), λi(h

∗
i , τ−i(h−i)) ̸∈ S(γ, τ(h∗i , h−i))
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or, for some standard type t′i and we have that for all hi with τi(hi):

(ηi(hi), λi(h
∗
i , τ−i(h−i)) ̸∈ S(γ, (t′i, τ−i(h−i)).

In either case, ϕi(h
∗
i )[h−i] > 0 implies pi(τ−i(h−i)|ti) > 0 and thus either:

(σi,ti
i (ti), λi(h

∗
i , τ−i(h−i)) = σi,ti(ti, τ−i(h−i)) ̸∈ S(γ, (ti, τ−i(h−i))

or

(σi,ti
i (t′i), λi(h

∗
i , τ−i(h−i)) = σi,ti(t′i, τ−i(h−i)) ̸∈ S(γ, (t′i, τ−i(h−i)).

This contradicts our premises, concluding the proof.

Proof of Theorem 9. 1 =⇒ 2 : Let h∗ ∈ RAT ∗
i ∩ Ki(Wi ∩ SOLi). We invoke again

Lemma 1 to argue that there exists a zi : T → Hi such that τi(zi(t)) = ti for all ti ∈ Ti and

(ηi(zi(t)), λi(h
∗
i , t−i)) ∈ S(γ, t) for all t ∈ Pi(τi(h

∗
i )).

Consider now profile (ηi(zi(t)), λi(h
∗
i , t−i)) for all ti ∈ Ti. From h∗ ∈ RAT ∗

i there exists

an e ∈ E(γ) and a σ ∈ R(e) such that ei,ti = λi(hi, ·) and ηi(h
∗
i ) = σi(τi(h

∗
i )). We can then

rewrite these equations as follows:

(σi, ei,ti)(t) = (ηi(zi(t)), λi(h
∗
i , t−i))

By construction of zi, for all t ∈ Pi(τi(h
∗
i )):

(σi, ei,ti)(t) = (ηi(zi(t)), λi(h
∗
i , t−i)) ∈ S(γ, t).

This concludes the proof.

2 =⇒ 1: The proof is analogous to the proof of Theorem 8, except we now have to

show h∗ ∈ RAT ∗
i . This follows easily, as σ ∈ R(e), ei,ti = λi(h

∗
i , ·) and ηi(h

∗
i ) = σi(ti).
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Proof of Lemma 1. We invoke the following Lemma, proved below:

Lemma 2. If h∗ ∈ Ki(Wi ∩ SOLi), for all t−i ∈ T−i such that pi(t−i|τi(h∗i )) > 0 there

exists an h−i ∈ H−i such that τ−i(h−i) = t−i and (h∗i , h−i) ∈ SOLi.

Let t ∈ T be such that pi(t−i|τi(h∗i )) > 0 (that is, t ∈ Pi(τi(h
∗
i ))), and let (h∗i , h−i) ∈

SOLi be such that τ−i(h−i) = t−i (we know such an h−i exists by Lemma 2). Recall that:

SOLi = {h ∈ H : (ηi(τ
−1
i (ti)), λi(hi, τ−i(h−i))) ∩ S(γ, (ti, τ−i(h−i)) ̸= ∅, ti ∈ Ti}.

As (h∗i , h−i) ∈ SOLi, there exists then an hi ∈ τ−1
i (ti) such that:

(ηi(hi), λi(h
∗
i , t−i)) ∩ S(γ, t) ̸= ∅.

For all t ∈ Pi(τi(h
∗
i )) with ti ̸= τi(h

∗
i ), set then zi(t) equal to such hi. By an analogous

argument, for all t ∈ Pi(τi(h
∗
i )) with ti = τi(h

∗
i ), set z(t) = h∗i and let z(t) be any hi ∈ τ−1

i

for t ̸∈ Pi(τi(h
∗
i )).

It is clear that τi(zi(t)) = ti, as zi(τi(h
∗
i ), t−i) = h∗i and zi(t) ∈ τ−1

i (ti) for ti ̸= τi(h
∗
i ).

Moreover, the argument above implies that for all t ∈ T :

(ηi(z(t)), λi(h
∗
i , t−i)) ∩ S(γ, t) ̸= ∅.

This concludes the proof.

Proof of Lemma 2. Fix any t−i ∈ T−i, and let SOLi(h
∗
i ) = {h−i ∈ H−i : (h

∗
i , h−i) ∈ SOLi}.

As h∗ ∈ Ki(SOLi) we have:

∫
SOLi(h∗

i )
1 dϕi(h

∗
i )[h−i] = 1.
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As T−i is finite, we can break down the sum over all type profiles of i’s opponents as follows:

∑
t−i∈T−i

∫
SOLi(h∗

i )
1{τ−i(h−i)=t−i}(h−i) dϕi(h

∗
i )[h−i] =

∫
SOLi(h∗

i )
1 dϕi(h

∗
i )[h−i] = 1

Moreover, as h∗ ∈ Ki(Wi), it holds for all t−i ∈ T−i:

pi(t−i|τi(h∗i )) =
∫
H−i

1{τ−i(h−i)=t−i}(h−i) dϕi(h
∗
i )[h−i] ≥

∫
SOLi(h∗

i )
1{τ−i(h−i)=t−i}(h−i) dϕi(h

∗
i )[h−i]

The last inequality follows from SOLi(h
∗
i ) ⊆ H−i. As the sum over types of both sides is

1, from this inequality it follows that:

pi(t−i|τi(h∗i )) =
∫
SOLi(h∗

i )
1{τ−i(h−i)=t−i}(h−i) dϕi(h

∗
i )[h−i].

Thus, whenever pi(t−i|τi(h∗i )) > 0, the right-hand side of the inequality above is strictly

positive. This means there exists at least one h−i ∈ H−i such that h−i ∈ SOLi(h
∗
i ) and

τ−i(h−i) = t−i. Given that h−i ∈ SOLi(h
∗
i ) implies (h∗i , h−i) ∈ SOLi, this concludes the

proof.
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