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Abstract

Traditional mechanism design assumes the planner has almost complete freedom in

choosing an implementing mechanism. The paper generalizes the model by requiring

the implementing mechanism to satisfy some exogenously imposed constraints on the

lotteries in each agent’s opportunity set. We show the revelation principle is still

valid for a class of these restrictions, and we discuss applications of this framework to

mechanism design in network environments.
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1 Introduction

Can a government design a mechanism curbing the probability of infection in a population

of agents, when the marginal cost of avoiding infection is private information? At first

glance, this may seem like a regular mechanism design problem: as long as it is incentive

compatible, it would be enough for the government to ask each agent to report their private

information and implement the outcome corresponding to agents’ reports.

This approach neglects a crucial detail of the problem: agents can affect each others’

effort cost and probability of contagion only if they have social contact in the first place,

restricting the set of mechanisms the planner can choose from. In particular, it imposes

a restriction on the opportunity sets agents can face in the implementing mechanism. For

example, a shop may be unable to affect the level of precautions and risk of infection of

agents that are neither customers nor employees.1

The literature on mechanism design has not developed, thus far, a good language to

describe problems of this kind. This paper develops a novel language to model these prob-

lems and characterizes the set of implementable social choice functions for any restrictions

the planner may face. We will consider two main motivating examples: implementation

over a given network (e.g., a social network or a priority ordering) and network design (e.g.,

implementation of an innovation-fostering network).

As the set of mechanisms the designer can choose from is now restricted, we do not know

whether the revelation principle holds—that is, if it is enough to focus on direct revelation

mechanisms only. The revelation principle may be violated, for instance, if the restrictions

the planner faces force her to include some specific alternative in the opportunity sets of

the players. This is the case in some exercises of network design, such as designing a social

network app in which the option if the option to unfollow other users has to be always

available.

1For simplicity, let us consider a static environment in which the social circles of each agent are
taken to be exogenous.
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The revelation principle is still valid when the opportunity restrictions are such that,

for any allowed opportunity set, all subsets of that set are also allowed. As the opportunity

sets of the direct mechanism will always be a subset of the opportunity sets that agents

face in any indirect implementing mechanism, any implementable social choice function

is implementable via the associated direct mechanism.2 This is the case in two of the

motivating examples mentioned above: mechanism design over a given network and one-

sided matching problems.

If the revelation principle holds, the set of (partially) implementable social choice func-

tions is equivalent to the set of functions that are BIC and admissible. Admissibility requires

that the direct mechanism associated with a given social choice function satisfies the op-

portunity restrictions the planner faces.

The revelation principle holds in one of the two applications considered in this paper,

implementation over an exogenously given network. In particular, focusing on the problem

of one-sided matching with priorities, admissibility and the revelation principle entail that

any implementable and ex-post efficient SCF must deliver the same allocation as the serial

dictatorship algorithm. If we focus instead on the problem of implementing an SCF with

one of the graphical games associated with the exogenously given network, we obtain Local

Incentive Compatibility as a new necessary condition for implementation. Local Incen-

tive Compatibility strengthens regular BIC by requiring truth-telling to be optimal even if

opponents not connected to an agent do not report truthfully their type.

If the revelation principle does not hold, the class of implementable social choice func-

tions coincides instead with the class of social choice functions that can be extended to a

larger type space and whose extension is Bayesian Incentive Compatible, admissible, and

delivers the same outcome as the social choice function of interest. This additional complex-

ity is due to the fact some restrictions may require the planner to gather more information

2If we interpret agent’s actions as messages, this kind of restriction can be thought of as setting
an upper bound to how much private information agents can communicate with their choice of an
action.
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than the one she needs to implement the SCF—for instance, whenever the planner is always

required to include some alternative in all agents’ opportunity sets.

The revelation principle does not hold in the second application considered in this pa-

per: network design exercises. For these exercises, we prove implementability is equivalent

to Bayesian Incentive Compatibility and a novel condition called accountability. Account-

ability requires that, for all possible links that an agent may want to destroy, there exists

an appropriate “punishment” the planner can enact to discourage a deviation in that sense.

Even if the revelation principle does not hold, we propose a relatively simple indirect mech-

anism implementing any accountable SCF.

Other works have considered restrictions imposed on the implementing mechanism.

The most recent work in this area is Gavan and Penta (2022) and their notion of safe

implementation, which restricts the set of possible deviations from the equilibrium profiles.

In our paper, restrictions apply instead to every profile of actions in the mechanism. This

allows us to capture constraints that the mechanism has to satisfy regardless of the state,

such as the ones imposed by a pre-existing network. This difference makes the results in

this paper not directly comparable to Gavan and Penta (2022) except for the degenerate

case in which their admissibility function does not depend on the state.

Hayashi and Lombardi (2019) also consider a planner who faces an institutional con-

straint in the choice of the implementing mechanism. In their work, the planner is able to

design a mechanism only for one of the two sectors of society, while taking the mechanism

of the other sector as given: for instance, the planner may design a mechanism to share the

cost of a public good, while taking as given a market for private goods. Their framework is

again unsuitable to capture some of the restrictions considered in this paper—in particular,

restrictions on how large the opportunity sets of players can be.
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2 Model

The goal of the social planner is to select an alternative from a set A, conditional on some

information privately held from the agents in set I. As usual in the literature, we model the

incomplete information problem by assuming there exists a finite set of types Ti for each

agent i ∈ I and that each agent knows her type but not the type of other players.3 Let

T = ×i∈ITi be the set of all possible type profiles.

Let agents share a prior p over the type space, and let them update their beliefs accord-

ing to Bayes’ rule. We assume preferences over lotteries have expected utility form, with

Bernoulli utility ui : A×T → R. Abusing notation slightly, let ui(a, t) for a ∈ ∆(A) denote

the expected utility agent i derives from lottery a when the type profile is t.

The social planner seeks to implement a social choice function f : T → ∆(A), and

she does so by designing a mechanism (µ, S) where S = ×i∈ISi is an action space and

µ : S → ∆(A) is an outcome function. Once the planner has committed to a mechanism,

agents choose a strategy σi : Ti → ∆(Si). We will denote the set of all such functions as Σi

and a profile of strategies {σi}i∈I as σ ∈ Σ.

We will model the restrictions the planner faces through an opportunity mapping O,

which is a convex correspondence mapping each subset K of the set I of all players to

a subset OK of the set of lotteries over alternatives ∆(A). These restrictions should be

understood as constraints the planner takes as given when choosing a mechanism to im-

plement the SCF of interest. As the mechanism chosen by the planner is by definition

state-independent, it is without loss of generality to assume that O is not responsive to

changes in the state.

We then define the set of admissible mechanisms G(O) as:

G(O) = {(µ, S) : µ(SK , s−K) ∈ OK , for all δ−K ∈ ∆(S−K)}
3The finiteness assumption is not necessary for the arguments, but it simplifies exposition.
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That is, a mechanism is allowed if all opportunity sets of coalition K ⊆ I belong to OK .

Could these constraints be more easily captured by removing some elements from the

set of possible alternatives A the planner has available, or by imposing suitable restrictions

on agents’ utility functions? The focus of this paper is on those setups in which only a

subset of agents is allowed to induce some outcomes: indeed, removing an alternative a

from set A is equivalent to imposing the restriction that implies no player can induce a.

Consider again our contagion example. The restriction the planner faces in that case

is that agents that are not connected should not be able to affect each other’s outcomes:

however, this constraint cannot be captured in the classical mechanism design model, which

does not put any bounds on the agents’ power to induce a given alternative.4 Moreover,

eliminating some alternatives from set A would impose a much stronger restriction on the

planner, as it would entail that no agent is able to induce such alternative.

A similar argument applies to suitably restricting agents’ utility functions as well.

Finally, we say that a SCF f is (partially) O-implementable whenever there exists an

admissible mechanism that partially implements f in BNE, i.e. there exists (µ, S) ∈ G(O)

and a BNE σ of (µ, S) such that f = µ(σ). It is straightforward to check this definition co-

incides with implementability in BNE whenever the restrictions have no bite, i.e. whenever

OK = ∆(A) for all K ⊆ I. For the remainder of the paper, let me say f is O-implementable

whenever it is partially O-implementable.

As O-implementability is a stricter requirement than implementability, all necessary

conditions for BNE implementation will still be necessary for O-implementation.

In particular, Bayesian Incentive Compatibility (BIC) will still be a necessary condition.

We say a SCF f is Bayesian Incentive Compatible (BIC) whenever for all i ∈ I, ti, t
′
i ∈ Ti:

∫
T−i

ui(f(t), t) dp(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dp(t−i|ti)

4The canonical mechanism of Maskin (1999) and Jackson (1991) are cases in point, as each agent
can induce any outcome she desires by announcing an integer higher than the one reported by their
opponents.
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Finally, we say a SCF satisfies admissibility whenever f(∆(TK), δ−K) ∈ OK for all K ⊆ I

and δ−K ∈ ∆(T−K). In other words, admissibility ensures the direct mechanism associated

with a given SCF belongs to G(O).

3 Motivating Examples

In this section, we discuss how the model above can be applied to capture restrictions arising

in mechanism design over a fixed network and in network design. In each of these cases, the

planner is constrained to choose from a particular class of games: graphical games, games

in which lower-priority agents cannot affect the outcome of high-priority ones, and network

formation games.

3.1 Implementation over an Exogenous Network

The problem described in the introduction to this paper is an exercise of mechanism design

over an exogenously given network: agents are embedded in a social network, and agents

who are not linked cannot affect each other’s outcome. Other examples from the network

literature include management hierarchies and load-balancing negotiations in computer net-

works (Kearns et al., 2001), provision of local public goods, local market power, innovation

spillovers, peer effects, and organization hierarchies. The same framework can capture also

problems of mechanism design with priorities.

The following two sections present two different ways of formalizing this intuition.

3.1.1 Network Games

The first way to capture the restrictions imposed by a pre-existing network is to assume

agents can affect the outcome of agents they are linked to in the network, i.e. their neigh-

bors.5

5More permissive definitions can be captured within the same framework—for instance, allowing
agents to affect others’ outcomes only to a limited degree.
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Consider a network N = (g, I), where g is a collection of (directed) links and I is a set

of nodes. In this case, nodes i ∈ I represent players of the game. Each link gij ∈ g captures

the fact player i is allowed to affect the outcome of player j in the mechanism. Let us adopt

the convention that each agent is linked to herself, i.e. that gii ∈ g for all i ∈ I.

Let A have a product structure, i.e. A = ×i∈IAi. We can then define the set of network

games associated with a network N as the set of games induced by any mechanism (µ, S)

such that (µ(s))i = (µ(s′j , s−j))i for all i, j with gji ̸∈ g, s′j ∈ SJ and s ∈ S.

This definition formalizes the intuition that i is able to change j’s outcome by varying her

action only if there is a (directed) link between the two. It is possible to prove the set of all

network games associated with network N can be characterized as the set of mechanisms

that are admissible according to a suitably chosen restriction mapping O capturing the

intuition that agents can affect the (distribution over) outcomes of their neighbors only. To

this purpose, it is enough to consider any mapping O such that OK ∈ ON
K whenever all

lotteries in OK imply the same marginal probability distribution over A−N(K), where N(K)

is the set of agents connected to at least one i ∈ K.6

This paper’s framework can be immediately applied to implementation via network

games. In particular, if the network is completely connected (i.e., there is a link between

any two players: gij ∈ g for every i, j), ON becomes trivial and then network implementation

boils down to Bayesian Nash implementation. The network structure, however, generally

constitutes a non-trivial constraint: Section 5.3 shows that the network structure yields a

local incentive compatibility condition that is more restrictive than usual BIC. In particular,

ON -admissibility requires the SCF f to be such that each agent’s outcome is not affected

by agents that do not belong to her neighborhood.

An example of a problem in which the network structure plays a role comes from the

constraints imposed by a pre-existing priority system. Let agents be ranked according to a

particular criterion, such as test scores in college choice or seniority in dormitory allocation

6Formally, OK is the set of all OK ⊆ ∆(A) such that π, π′ ∈ OK entails that π and π′ have the
same marginal distribution over A−N(K).
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problems. If the planner operates under such a constraint, the implementing mechanism

will have to be such that agents with lower priority can not affect the matching or allocation

of those ranked above them.

Assume agents with lower indexes have a higher priority order than agents with larger

indexes and that the set of alternatives consists of all possible allocations of objects in a set

Ai = X (without repetition).

We can then capture the fact that agents with lower priority are not allowed to affect

the object agents with higher priority receive by assuming gij ∈ g if and only if i ≥ j by

assuming that for all K ⊆ I.7 In this case, O will be such that OK contains any subset OK

of ∆(A) such that all lotteries in OK have the same distribution over outcomes for agents

with priority higher than the agent with the highest priority in K.8

Admissibility then entails the information agent i reports should not affect the allocation

received by agents with higher priority: the planner cannot use the information provided by

i to determine the object received by any j < i. In particular, only self-reported information

will matter for the first agent in the priority ranking: if f is BIC, it must be strategy-proof

for this agent. A similar argument applies for remaining agents: if f is BIC, truthful

reporting must be optimal no matter what agents with lower priority report.

3.1.2 Graphical Games

An alternative way to model the restrictions imposed from a pre-existing network is to

assume an agent can affect an opponent’s payoff only if she is linked to that opponent.

Consider again a network N = (g, I), without imposing any restriction on the structure

of A. We define the set graphical game associated with network N as the set of games

induced by any mechanism (µ, S) such that ui(µ(s), t) = ui(µ(s
′
j , s−j), t) for all j with

7While we focus on the simplest case in which agents are totally ordered, more complex priority
systems can be captured by appropriately defining the network associated to it.

8Formally, π, π′ ∈ OK implies π and π′ have the same marginal distribution over outcomes for
all agents i with i < minj∈K j.
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gji ̸∈ g, s′j ∈ Sj , s ∈ S and t ∈ T .9 Differently from the network games described above,

graphical games allow an agent to directly affect an opponent’s payoff only if she is linked

to that opponent.

It is again possible to prove the set of all graphical games associated with the pair (N , T )

can be characterized as the set of mechanisms that are admissible according to a suitably

chosen restriction mapping. To this purpose, it is enough to consider OG to be such that

OK ∈ OG
K whenever for all a, b ∈ OK we have ui(a, t) = ui(b, t) for all t ∈ T and i with

gji ̸∈ g for all j ∈ K.

Similarly to network games, restricting attention to graphical games generally imposes a

non-trivial constraint on the planner whenever the network is not complete. As for network

games, admissibility requires a local incentive compatibility condition to hold (Section 5.3).

In addition, if the domain of preferences is rich enough and the network is not completely

connected, the only implementable SCF are the ones in which a subset of players acts as a

“dictator”.

3.2 Network Design

The social planner may be tasked with the design of large infrastructures robust to failures

and perturbations (such as power grids and computer networks) or a network that slows

down contagion across nodes (e.g. to prevent epidemics) or accelerates it (e.g. to foster

innovation).10

We can see this network design exercise as a mechanism design problem in which the

planner has to pick a mechanism inducing the right network in each state. Denote the set of

all possible graphs as G = ×i∈IGi, where Gi is the set of all (directed) links gij that agent

i could form with her opponents. We will assume A is the space of all pairs (g, x) ∈ (G,X),

where x is a vector of other outcomes (for example, allocations or transfers).

9This definition of graphical game is used, among the others, from Kearns et al. (2001) in Com-
puter Science.

10See Jackson et al. (2017) for a longer discussion.
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The first kind of restriction the planner may face in these environments is that an

agent is typically not allowed to affect the links between other agents that do not involve

herself—that is, her actions can affect the network only locally.11 This is the case, for

instance, in the network formation models of Jackson and Wolinsky (1996) and Bala and

Goyal (2000): both works assume the set of strategies available to each agent consists of all

linking decisions with other players in the network formation game. We can capture this

feature by considering an opportunity mapping OD such that, for allK ⊆ I, OD
K contains all

OK ⊆ ∆(G×X) such that all π ∈ OK imply the same marginal distribution over (Gi)i ̸∈K .

In this setup, admissibility entails an agent’s report can only affect the target network

locally, as all networks in i’s opportunity set will differ only in i’s neighborhood.12 We can

also notice this restriction function satisfies the conditions of Theorem 2, and we can use

the revelation principle to argue that any BIC function such that agents’ information has

only local effects on the network is implementable.

In some network design environments, the planner may also be unable to force an agent

to link or not to link with another agent. For instance, a dating app cannot force two users

to date, and a regulation authority cannot compel two firms to innovate by sharing their

know-how.13

We can capture this intuition by defining OD′
as follows. For each graph g, let giK ⊆ g

denote the set of links that i forms with agents in K. For all K ⊆ I, let then OD′
K contain

all sets OK such that for all π ∈ OK and collections (Li)i∈I with Li ⊆ I/{i} there exists

π′ ∈ OK that assigns g−∪i∈KgiLi . In other words, any OK ∈ OK is such that agent i ∈ K

could choose to sever the links connecting her with any subset of agents by changing the

action she chooses in the mechanism.

11In other applications, such as school choice problems, we may relax this assumption and allow
agents to affect the links of agents they are directly or indirectly connected to. While we do not
consider these more complex restrictions in this section, they can be accommodated similarly to the
ones presented here.

12While i’s action affects the network only locally, it could still indirectly affect the incentives to
form a link of non-neighboring nodes.

13This does not entail the decision not to comply does not have other consequences: for example,
a government may offer incentives (captured by x) to firms that come together to innovate.
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Finally, notice the restrictions captured by OD and OD′
are not mutually exclusive: in

that case, it will be enough to take restriction mapping OD∗ to be given by OD∗
K = OD

K∩OD′
K

for all K ⊆ I.

4 Results

In this section, we show the set of implementable social choice function coincides with the

set of social choice functions that admit an extension that is both BIC and admissible

(Theorem 1). In some interesting cases, this extension coincides with the social choice

function of interest (Theorem 2).

Due to restrictions on the opportunity sets the planner can present to agents, the revela-

tion principle does not generally hold. This happens, in particular, when the planner has to

include in agents’ opportunity sets lotteries that are not part of the agents’ opportunity sets

in the direct mechanism. For instance, the designer of a dating app has to offer users the

possibility to decline a specific date—even if the designer would want that date to happen.

From an informational standpoint, this entails that the planner has to ask agents for more

information than the one she needs to implement the SCF of interest.14

We can capture this intuition by extending the direct mechanism accordingly. Denoting

the pair (T, p) as a type space, let χ : T̂ → T be an onto mapping, f : T → ∆(A), and

f̂ : T̂ → ∆(A). We then say triple (T̂ , p̂, χ) extends type space (T, p) whenever for all

T ′ ⊆ T :

p(T ) =

∫
t̂∈T̂

1{t̂∈χ−1(T )} dp̂(t̂)

That is, (T̂ , p̂, χ) extends type space (T, p) whenever the probability of each state in T is the

same as the sum of the probabilities of all states t̂ ∈ T̂ that χ associates to t. We can then

interpret χ as a function that associates each piece of information an agent could reveal to

the planner in this “extended direct mechanism” with a standard type.

14Here we interpret “information” in terms of revealed preference data: the planner elicits agents’
preferences over a set of lotteries that is larger than their opportunity set in the direct mechanism.
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For a given extended type space (T̂ , p̂, χ), we say f̂ is an extension of f whenever for

all t ∈ T :

f(t) =

∫
t̂∈χ−1(t)

f̂(t̂) dp̂(t̂)

That is, f̂ extends f with respect to a given expanded type space (T̂ , p̂, χ) whenever the

distribution over alternatives f prescribes in state t is the same as the one expected as the

sum over all states t̂ that χ associates to t.

Theorem 1. A SCF f is O-implementable if and only if there exists an extended type

space (T̂ , p̂) of (T, p), a χ : T̂ → T and an extension f̂ : T̂ → ∆(A) of f that is BIC and

admissible.

Theorem 2 below highlights they are instead enough in the special case of opportunity

restrictions only imposing an upper bound to how large the opportunity sets are.

Theorem 2. Let O be such that OK ∈ OK implies O′
K ∈ OK for all O′

K ⊆ OK and K ⊆ I.

Then f is partially implementable if and only if it is BIC and admissible. Moreover, if f is

partially implementable, it is partially implementable via a direct mechanism.

The revelation principle reduces any (potentially complex) implementing mechanism

to a direct mechanism in which agents have only to report their own type. As long as

opportunity restrictions do not impose a constraint on how small opportunity sets can be,

any implementable social choice functions will be implementable via the associated direct

mechanism.

5 Applications

5.1 Implementation over an Exogenous Network

In network games, only the neighborhood of each agent is able to affect her outcome or pay-

offs. As both ON and OG satisfy the condition of Theorem 2, the revelation principle holds.

12



In either case, admissibility imposes non-trivial restrictions on the class of implementable

SCF whenever the underlying network is not complete.

5.2 Network Games

For the remainder of this section, let me assume agents’ utility depends only on the object

they receive and their type to keep our results comparable with standard models in the

matching literature. Abusing notation, let us denote agents’ Bernoulli utilities as ui(x, ti),

where x is the object the agent is allocated. Let us also assume that preference reversals

are possible for each agent. That is, assume there exists no i ∈ I and no pair of objects x, y

such that ui(x, ti) > ui(y, ti) for all ti ∈ Ti.

We will prove that, in this environment, ex-post Pareto efficiency is possible only if the

SCF allocates objects the same way a serial dictatorship algorithm would do. This follows

from the fact that agents with a priority ordering lower than i cannot affect the object she

is allocated: if x is not i’s preferred object among those left over by agents with higher

priority in state t, then x must be assigned to i even if type t′j of j > i would prefer x to

the object y she is assigned, generating an inefficiency.

Formally, we say f is (ex-post) efficient whenever for all t ∈ T , there exists no a ∈ A

such that ui(a, ti) ≥ ui(f(t), ti) for all i ∈ I, with strict inequality for at least one i. We

will moreover say f is a serial dictatorship whenever it assigns to player 1 her top choice,

to player 2 her top choice among the remaining objects, and so on and so forth.

We can then derive the following result.

Theorem 3. An SCF f is efficient and ON -admissible only if f is a serial dictatorship.

Notice ON satisfies the conditions of Theorem 2, entailing ON -admissibility is necessary

for implementation. Together with Theorem 3, this implies any implementable SCF f will

yield the same outcome as the serial dictatorship algorithm in this kind of setup.
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5.3 Graphical Games

The fact the revelation principle holds immediately delivers a restriction on f : as any OG-

implementable f is also admissible, ui(f(t), t
′) = ui(f(t̃j , t−j), t

′) for all t, t′ ∈ T , t̃j , tj ∈ Tj

and j not connected to i.

This translates into a necessary condition stronger than BIC: truth-telling will have to be

optimal for each agent as long as her neighborhood is reporting truthfully, regardless of the

reports of agents outside her neighborhood.15 Formally, we say a SCF f is Locally Incentive

Compatible (LIC) whenever for all i ∈ I, ti, t
′
i ∈ Ti and deception α−N(i) : T−N(i) → T−N(i):

∫
T−i

ui(f(ti, tN(i), α−N(i)(t−i), t) dp(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, tN(i), α−N(i)(t−i), t) dp(t−i|ti)

In this sense, we can interpret LIC as a weaker form of strategy-proofness, requiring i’s

report to be optimal no matter what agents outside her neighborhood report. We then

derive the following result.

Corollary 1. If f is OG-admissible, then f is BIC if and only if it is LIC.

While LIC implies BIC, it is not enough to imply OG-admissibility of f , as the latter

requires reports of agents outside of i’s neighborhood to not affect i’s outcome in any way.

Instead, LIC does not exclude this possibility: reports of agents outside of i’s neighborhood

may still affect her outcome as long as truth-telling remains optimal.

Notice that any LIC f is BIC even if agents do not expect opponents outside their

neighborhood to report truthfully. Therefore, f would be implementable even if agents pay

attention or correctly anticipate only the strategies of their neighbors. Similarly, LIC entails

each agent has an incentive to truthfully report her type even if the agents that are not

linked to her are faulty (in the sense of Eliaz (2002)).

15Notice a similar result obtains with network games as well, as long as agents only care about
their own allocation. As that allocation can be affected only by their neighbors, the same is true for
their payoff.
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If the domain of preferences is rich enough with respect to the range of f , OG-admissibility

becomes even more restrictive. Let us say T is rich with respect to SCF f if for all i ∈ I

and pair of alternatives a, b ∈ f(T ) there exists at least one state t ∈ T such that i is not

indifferent between a and b.16

If richness holds, any agent who is not connected to all other agents will not be able to

affect the outcome of the mechanism—in other words, f will not respond to the report of

this agent. This is the case for most agents in a variety of network shapes (lines, circles,

stars, trees) when there are at least three agents.

Formally, we will say f is unresponsive to agent i whenever f(ti, t−i) = f(t′i, t−i) for all

t−i ∈ T−i and ti, t
′
i ∈ Ti. The following result then follows as a corollary to Theorem 1.

Corollary 2. If T is rich with respect to f and there exist j ∈ I such that gij ̸∈ g for some

i ∈ I, any ON -admissible f is unresponsive to i.

This result follows from the fact agents cannot affect the payoff of the opponents they

are not linked to in any state (by admissibility), and richness entails they will not be able

to affect the outcome at all. Formally, consider any j ̸= i with gij ̸∈ g and f(t) ∈ Oi. By

admissibility, uj(f(t), t
′) = uj(f(t

′′
i , t−i), t

′) for all t′ ∈ T , t′′i ∈ Ti. As T is rich with respect

to f , it follows f(ti, t−i) = f(t′i, t−i) for all ti, t
′
i ∈ Ti and t−i ∈ T−i, i.e. f is unresponsive

to i. Intuition for this result is quite straightforward: agents cannot affect the payoff of the

opponents they are not linked to in any state by admissibility, and richness entails they will

not be able to affect the outcome at all.

This has important implications. For example, any SCF that is implementable over a

star network is dictatorial when T is rich with respect to f . Formally, say f is dictatorial

whenever there exists i ∈ I such that ui(f(t), t) ≥ ui(f(t
′), t) for all t, t′ ∈ T .17 This

result is easy to derive if we consider that any two peripheral players in the network are

16This condition is reminiscent of the universal domain assumption in the impossibility theorems
of Arrow and Gibbard and Satterthwaite.

17This is a slightly weaker definition of dictatorship, that coincides with the classical one whenever
f is onto.
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not connected: due to richness, those players are therefore unable to affect the outcome.

A similar (weaker) argument holds for other core-periphery networks: peripheral players

will be unable to affect the outcome, which would be determined in the connected core18.

Generalizing, for these graphs Corollary 2 implies information revelation to the planner can

only affect other agents’ incentives locally : i can therefore reveal payoff-relevant information

only on her neighbors.

5.4 Network Design

In network design environments, whether the revelation principle holds or not will depend

on what restrictions the planner is facing. For the remainder of this section, we will restrict

attention to any SCF f = (γ, ξ), where γ : T → G and ξ : T → ∆(X).19

If we assume the restrictions the planner faces are captured by mapping OD, the reve-

lation principle holds by an argument similar to the one of previous sections and a SCF f

is implementable if and only if it is BIC and admissible. Moreover, an agent’s report has

only local effects on the network arising from the strategic interaction whenever A is the set

of all possible graphs over the nodes in I. That is, the planner cannot use the information

contained in i’s report to decide whether agents j, k ̸= i should be linked.

AsOD′
does not satisfy the conditions laid down in Theorem 2, not allOD′

-implementable

and OD∗-implementable SCF are implementable via a direct mechanism. For instance, a

constant SCF that prescribes all agents are connected for every state t ∈ T would not be

implementable via the associated direct mechanism as there has to exist at least one action

for each agent allowing her to destroy each of her links.

Define γ−iK : T → G as γ−iK(t) = γ(t) − g−iK for all t ∈ T , i ∈ I and K ⊆ I.

We say a SCF f is accountable whenever for all i ∈ I and non-empty K ⊆ I there exists

18In this sense, we could argue the core is the “dictator” in this case.
19Assuming the SCF assigns a deterministic graph to each state in T does not affect our results,

but it considerably simplifies notation.

16



ξKi : T → ∆(X) such that for all ti, t
′
i ∈ Ti:

∫
T−i

ui(γ(t), ξ(t)), t) dp(t−i|ti) ≥
∫
T−i

ui(γ
−iK(t′i, t−i), ξ

K
i (t′i, t−i)), t) dp(t−i|ti)

For each K ⊆ I, we can interpret ξKi as “punishing” agent i of type ti for severing links

with agents in K.

Theorem 4. A SCF f is OD′
-implementable if and only if it is BIC and accountable.

Moreover, if f is OD-admissible, then it is OD∗
-admissible.

To implement any SCF satisfying accountability and BIC, it is enough to design a simple

indirect mechanism asking agents to report their type and a set of agents they do not want

to be linked to. If all agents report a type and do not ask to destroy any link, the outcome

of the mechanism is the same as the SCF would prescribe for that type profile. Otherwise,

the graph resulting from the mechanism is the same as the SCF would prescribe minus the

links agents asked not to form and agents will be “punished” with the function xKi derived

from the accountability condition above.

Notice that, whenever if A consists of the set of all graphs over I (that is, X = ∅),

accountability holds only if the SCF is such that the expected value of each set of links is

be non-negative.
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Appendix A Proofs

Proof of Theorem 1. Suppose f isO-implementable. Then there exists a mechanism (µ, S) ∈

G(O) with an equilibrium σ such that µ(σ) = f . Construct then an extended type space as

follows. Let T̂i = Ti ×∆(Si) and χ : T̂i → Ti be such that χ(ti, δi) = ti for all δi ∈ ∆(Si).

Clearly, χ is onto as for all ti ∈ Ti there exists t̂i = (ti, δi) for si ∈ ∆(Si) such that χi(t̂i) = ti.

Define then p̂ be such that for all i ∈ I, ti ∈ Ti, si ∈ Si, T
′
i ⊆ Ti and S′

i ⊆ Si:

p̂((T ′
−i, S

′
−i)|(ti, si)) =

∫
T ′
−i

σ−i(t−i)[S
′
−i] dpi(t−i|ti)

As σ−i(t−i)[S−i] = 1, it follows that p̂((T ′
−i, S−i)|(ti, si)) = p(T ′

−i|ti) for all ti ∈ Ti and

T ′
−i ⊆ T−i. Therefore for all T ′ ⊆ T :

∫
t̂∈T̂

1{t̂∈χ−1(T ′)} dp̂(t̂) = p̂((T ′, )) = p(T ′)

Set now f̂(t̂) = f̂((t, δ)) = µ(δ) for all t̂ ∈ T̂ . We prove f̂ extends f . By implementability

we have that for all t ∈ T :

f(t) = µ(σ(t)) =

∫
s∈S

µ(s) dσ(t)[s] =

∫
s∈S

f̂((t, s)) dp̂((t, s)) =

∫
t̂∈χ−1(t)

f̂(t̂) dp̂(t̂)

Let us now prove f̂ is BIC. Notice first that for all t̂′i ∈ T̂i there exists δ′i ∈ ∆(Si) such

that t̂′i = (t′i, δ
′
i). The equilibrium condition states that for all i ∈ I, ti ∈ Ti and δ′i ∈ ∆(Si):

∫
T−i

ui(µ(σ(t)), t) dpi(t−i|ti) ≥
∫
T−i

ui(µ(δ
′
i, σ−i(t−i)), t) dpi(t−i|ti)

Rewriting this inequality using linearity of expected utility:

∫
T−i

∫
S−i

ui(µ(s), t) dσ−i(t−i) dpi(t−i|ti) ≥
∫
T−i

∫
S−i

ui(µ(s
′
i, s−i), t) dσ−i(t−i) dpi(t−i|ti)
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The inequality above directly entails:

∫
T̂−i

ui(f̂(t̂), χ(t̂)) dp̂(t̂−i|t̂i) ≥
∫
T̂−i

ui(f̂(t̂
′
i, t̂−i), χ(t̂)) dp̂(t̂−i|t̂i)

Finally, we prove f̂ is admissible. Notice that, by construction, for all K ⊆ I and τ−K ∈

∆(T̂−K) there exists δ−K ∈ ∆(S−K) such that:

f̂(∆(T̂K), τ−K) = µ(∆(SK), δ−K) ∈ OK

As our choice of τ−K was arbitrary and (µ, S) is an admissible mechanism, this concludes

the necessity part of the proof.

As for the sufficiency part of the proof, set (µ, S) = (f̂ , T̂ ). As f̂(∆(T̂K), τ−K) ∈ OK for

all K ⊆ I and τ−K ∈ ∆(T̂−K), (µ, S) ∈ G(O). As f̂ is BIC and preferences are determined

only by t, for all i ∈ I, t̂i, t̂
′
i ∈ T̂i:

∫
T̂−i

ui(f̂(t̂), χ(t̂)) dp̂(t̂−i|t̂i) ≥
∫
T̂−i

ui(f̂(t̂
′
i, t̂−i), χ(t̂)) dp̂(t̂−i|t̂i)

Moreover, for all i ∈ I and t̂i, t̂
′
i ∈ χi(ti):

∫
T̂−i

ui(f̂(t̂), χ(t̂)) dp̂(t̂−i|t̂i) =
∫
T̂−i

ui(f̂(t̂), χ(t̂
′
i, t̂−i)) dp̂(t̂−i|t̂i)

Consider (µ, S) = (f̂ , T̂ ) and σ such that, for each t ∈ T and i ∈ I, σi(ti)[T̂
′
i ] = p̂(T̂ ′

i |χi(t̂i) =

ti) for all T̂
′
i ⊆ T̂i. By our definition of σ, the inequality and equality above together imply:

∫
T−i

ui(f̂(σ(t)), t) dp(t−i|ti) ≥
∫
T−i

ui(f̂(t̂
′
i, σ−i(t−i)), t) dp(t−i|ti)

Therefore σ is an equilibrium of (f̂ , T̂ ). Moreover, for all t ∈ T :

∫
T−i

f̂ ◦ σ(t) dp(t) =
∫
t̂∈χ−1(t)

f̂(t̂) dp̂(t̂) = f(t)
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Where the last equality follows from the fact f̂ extends f . Then (f̂ , T̂ ) has an equilibrium

σ such that f̂(σ) = f . This concludes the proof.

Proof of Theorem 2. For the if part, by Theorem 1, we have just to find an extended type

space (T̂ , χ, p̂) and a SCF f̂ that is BIC and that extends f . Let T̂ = T , χ be the identity

function and p̂ = p. It is then immediate to notice f̂ = f extends f , and that it is admissible

and BIC as f is admissible and BIC. From the sufficiency part of Theorem 1, it then follows

f is implementable via the associated direct mechanism (f, T ).

As for the converse, suppose f is implementable. As O-implementability implies stan-

dard implementability, f is BIC. Moreover, as f is implementable, there exists a mechanism

(µ, S) ∈ G(O) and an equilibrium σ such that f = µ(σ). As (µ, S) ∈ G(O), it follows that

µ(∆(SK), δ−K) ∈ OK for all δ−K ∈ S−K and K ⊆ I. Notice that for all τ−K ∈ ∆(T−K):

f(∆(TK), τ−K) = µ(∆(σK(TK)), σ−K(t−K)) ⊆ µ(∆(SK), σ−K(t−K)) ∈ OK

As OK ∈ OK whenever OK ⊆ O′
K for O′

K ∈ OK , it follows f(∆(TK), τ−K) ∈ OK for all

K ⊆ I and τ−K ∈ ∆(T−K). This entails f is admissible.

Moreover, as implementability of f entails it is BIC and admissible, the first part of

the argument implies it is implementable via the associated direct mechanism (f, T ). This

establishes the revelation principle holds, concluding the proof.

Proof of Corollary 1. It is immediate to see LIC implies BIC by considering α−N(i) as the

identity function. For the other side of the argument, recall that BIC entails that for all

i ∈ I and ti, t
′
i ∈ Ti we have:

∫
T−i

ui(f(t), t) dp(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, t−i), t) dp(t−i|ti)

As f is ON -admissible, i is indifferent between any of the reports of opponents she is not
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connected to. This implies that, for all i ∈ I, t′i ∈ Ti and α−N(i) : T−N(i) → T−N(i):

ui(f(t
′
i, t−i), t) = ui(f(t

′
i, tN (i), α−N(i)(t−i), t)

Therefore, for all i ∈ I, ti, ti ∈ Ti and α−N(i) : T−N(i) → T−N(i):

∫
T−i

ui(f(ti, tN(i), α−N(i)(t−i), t) dp(t−i|ti) ≥
∫
T−i

ui(f(t
′
i, tN(i), α−N(i)(t−i), t) dp(t−i|ti)

Completing the proof.

Proof of Theorem 3. For the sake of contradiction, suppose f is efficient andOP -implementable

but it does not generate the same allocation as the serial dictatorship algorithm. For the

remainder of the proof, define as Hi = {j ∈ I : j < i} and Li = {j ∈ I : j > i} the set

of agents who have (respectively) higher and lower priority than i. Also denote the object

that agent i receives in state t according to SCF f as fi(t).

As f does not generate the same allocation as the sequential dictatorship algorithm,

there exists a state t ∈ T , a player i ∈ I, and an object x ̸= fj(t) for all j ∈ Hi such that

ui(x, t) > ui(fi(t), t).

By the rich domain assumption, we know there exists a type profile t′Li
such that

uj∗(fi(t), t
′
j∗) > uj∗(x, t

′
j∗) for j∗ ∈ Li and uj(x, t

′
j) > uj(fi(t), t

′
j∗) for all j ∈ Li differ-

ent from j∗. That is, there exists a state in which every agent j different from j∗ with lower

priority than i prefers x to fi(t).

As f is admissible, agents with lower priority than i cannot affect her outcome: fi(t) =

fi(tHi , ti, t
′
Li
). This contradicts the assumption f is efficient: in state (tHi , ti, t

′
Li
), allocating

x to i and fi(t) to j (leaving other agents’ allocation unchanged) would strictly improve i’s

and j’s welfare while leaving other agents’ utility unaffected. This leads to a contradiction,

concluding the proof.

Proof of Theorem 4. If f = (γ, ξ) is OD′
-implementable, it is BIC and the implementing
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mechanism belongs to G(OD′
). Let σ be the equilibrium implementing f . As the implement-

ing mechanism is admissible, then for all K ⊆ I there exists sKi ∈ Si and ξKi : T → ∆(X)

such that:

∫
T−i

µ(sKi , σ−i(t−i)) dp(t−i|ti) =
∫
T−i

(γ−iK(t′i, t−i), ξ
K
i (t′i, t−i)) dp(t−i|ti)

As σ is an equilibrium it follows:

∫
T−i

ui(µ(σ(t)), t) dp(t−i|ti) ≥
∫
T−i

µ(sKi , σ−i(t−i), t) dp(t−i|ti)

Substituting both sides then yields the result:

∫
T−i

ui(f(t), t) dp(t−i|ti) ≥
∫
T−i

(γ−iK(t′i, t−i), ξ
K
i (t′i, t−i)) dp(t−i|ti)

As for the sufficiency part, consider the following implementing mechanism. Agents

choose an action si = (s1i , s
2
i ) ∈ Ti × 2I . Define the outcome function µ as follows:

1. if si = ti × ∅ for all i ∈ I, then µ(s) = f(t)

2. µ(s) = (γ̃(t), x̄(t)) for all other profiles s, where γ̃(t) = γ(t) − ∪i∈I ∪j∈s2i
gij for all

t ∈ T and ξ̃ = ξ
−is2i
K where k is the player with the lowest index such that s2i ̸= ∅

Notice this mechanism is OD′
-admissible: no matter what (mixed) action her opponents

are playing, there is always an action in each agent’s opportunity set that allows her not to

form links with any subset of her opponents. The same is true for each coalition of agents

K ⊆ I as well.

To show this mechanism implements f , let us consider strategy profile σ such that

σi(ti) = ti×∅ for all i ∈ I and ti ∈ Ti. As f is BIC, it is not profitable for any agent of type

ti to deviate to t′i × ∅. Deviating to any t′i ×K for K ̸= ∅ would not be profitable either.

In fact, accountability implies that for all t′i ̸= ti and K ⊆ I as for all i ∈ I, ti ∈ T ′
i and
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K ⊆ I:

∫
T−i

ui(γ(t), ξ(t)), t) dp(t−i|ti) ≥
∫
T−i

ui(γ
−iK(t′i, t−i), ξ

K
i (t)), t) dp(t−i|ti)

This completes the proof for the first part of the theorem.

Finally, suppose f is OD-admissible. Notice that, for any (mixed) action player by her

opponents, player i can not generate any links that she could not generate by changing her

report in the direct mechanism associated with f . A similar argument holds for all K ⊆ I,

concluding the proof.
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